Startseite Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel

  • Ponnurangam Raja und Rajalingam Malayalamurthi
Veröffentlicht/Copyright: 28. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper describes the effects of deep cryo treated high speed steel. In recent research, the cryo treatment has been acknowledged by improving the life or quality performance of tool materials. The molybdenum based high speed tool steel is frequently used in industry till date. Therefore, it is essential to observe the tool performance in machining of medium carbon steel (AISI 1045) on dry turning operation. The effect of untreated and deep cryo treated tool in turning of medium carbon steel is analyzed using Taguchi approach. The results indicated that the main cutting force obtained from cryo treated tool significantly decreased to 29 % when compared with the untreated tool. Also, it revealed that the surface roughness of machined component using deep cryo treated tool was better than of the untreated tool.

Kurzfassung

Der vorliegende Beitrag beschreibt die Auswirkungen der Tiefkältebehandlung eines Hochgeschwindigkeitsstahls. In kürzlich durchgeführten Forschungsarbeiten wurde die Kältebehandlung angewendet, um die Lebensdauer und Qualität von Werkzeugmaterialien zu verbessern. Der molybdän-basierte Hochgeschwindigkeitsstahl wird bis heute häufig in der Industrie eingesetzt. Daher ist es essentiell, das Werkzeugverhalten bei der Bearbeitung eines Kohlenstoffstahls (AISI 1045) zu beobachten. Das Verhalten des unbehandelten und tiefkältebehandelten Werkzeuges auf den Kohlenstoffstahl wurde mittels des Taguchi-Ansatzes analysiert. Die Ergebnisse deuten darauf hin, dass die Hauptschnittkraft nach der Tiefkältebehandlung des Werkzeuges signifikant auf 29 % im Vergleich zum unbehandelten Werkzeug herabgesetzt wurde. Außerdem stellte sich heraus, dass die Oberflächenrauheit der bearbeiteten Komponente bei der Verwendung des tiefkältebehandelten Stahls besser war als bei der Nutzung des unbehandelten Stahls.


*Correspondence Address, Asist. Prof. Ponnurangam Raja, Research Scholar and Faculty Member, Department of Mechanical Engineering, Adhiyamaan College of Engineering, and Anna University, Chennai, Hosur 635109 Tamil Nadu, India, E-mail:

Assistant Professor Ponnurangam Raja, born in 1979, achieved his BEng degree with specialization in Mechanical Engineering from the University of Madras, Chennai, India in 2003, and his MEng degree in Manufacturing Engineering from Anna University, Chennai, India in 2005. Afterwards, he joined industry as a design engineer and trainee project engineer for four years. Then he has been teaching since 2009. He is pursuing his PhD at Anna University, Chennai, India. His interest fields are cryogenic treatment, machining, tool wear and optimization. Currently, he has a position as Assistant Professor in the Department of Mechanical Engineering, Adhiyamaan College of Engineering, Hosur, Tamil Nadu, India.

Prof. Dr. Rajalingam Malayalamurthi, born in 1965, is Associate Professor in the Department of Mechanical Engineering, Government College of Technology, Coimbatore, Tamil Nadu, India. He received his doctoral degree from Anna University of Chennai, India in 1995. He has 29 years of teaching experience. His research interests are in the field of optimization processes, finite element analysis and tribology.


References

1 A. R.Machado, M. B.da Silva: Metal Machining, 3rd Ed., Editora da Universidade Federal de Uberlândia, MG, Brazil (2003) in Portuguise)Suche in Google Scholar

2 ASM Handbook Vol. 16: Machining, ASM International, Materials Park, Ohio, USA (1989)Suche in Google Scholar

3 http://www.strategyr.com/HighSpeedSteelHSSMetalCuttingToolsMarketReport.asp (2015)Suche in Google Scholar

4 K. C.Jain, A. K.Chitale: Text Book of Production Engineering, 2nd Ed., PHI, New Delhi, India (2010)Suche in Google Scholar

5 S. SinghGill, R.Singh, J.Singh, H.Singh: Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M2HSS turning tool for estimation of flank wear, Expert Systems with Applications39 (2012), No. 4, pp. 4171418010.1016/j.eswa.2011.09.117Suche in Google Scholar

6 E. M.Trent, P. K.Wright: Metal Cutting, 4th Ed., Butterworth-Heinemann, New York, USA (2000)10.1016/B978-075067069-2/50007-3Suche in Google Scholar

7 S.Akincioğlu, H.Gökkaya, İ.Uygur: A review of cryogenic treatment on cutting tools, The International Journal of Advanced Manufacturing Technology78 (2015) No. 9–12, pp. 1609162710.1007/s00170-014-6755-xSuche in Google Scholar

8 F.Farhani, K. S.Niaki, S. E.Vahdat, A.Firozi: Study of effects of deep cryotreatment on mechanical properties of 1.2542 tool steel, Materials and Design42 (2012), pp. 27928810.1016/j.matdes.2012.05.059Suche in Google Scholar

9 S.Singh, S.Singh, J.Singh: Improvement in tool life of M2HSS tools by cryogenic treatment, Journal of Metallurgical Engineering1 (2011), pp. 4761Suche in Google Scholar

10 S. SinghGill: Machining performance of cryogenically treated AISI M2 high speed steel tools, Journal of Engineering Research and Studies3 (2012), No. 2, pp. 4549Suche in Google Scholar

11 L. P.Singh, J.Singh: Effects of cryogenic treatment on high-speed steel tools, Journal of Engineering and Technology1 (2011) No. 2, pp. 889310.4103/0976-8580.86640Suche in Google Scholar

12 A.Molinari, M.Pellizzari, S.Gialanella, G.Straffelini, K. H.Stiasny: Effect of deep cryogenic treatment on the mechanical properties of tool steels, Journal of Materials Processing Technology118 (2001), No. 1–3, pp. 35035510.1016/s0924-0136(01)00973-6Suche in Google Scholar

13 D. E.DimlaSr., P. M.Lister: On-line metal cutting tool condition monitoring – I: Force and vibration analyses, International Journal of Machine Tools and Manufacture40 (2000), No. 5, pp. 73976810.1016/s0890-6955(99)00084-xSuche in Google Scholar

14 B.Sick: On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research, Mechanical Systems and Signal Processing16 (2002), No. 4, pp. 48754610.1006/mssp.2001.1460Suche in Google Scholar

15 F. J. JosePontes, A. P.Paiva, P. P.Balestrassi, J. R.Ferreira, M. B.Silva: Optimization of radial basis function neural network employed for prediction of surface roughness in hard turning process using Taguchi's orthogonal arrays, Expert Systems with Applications39 (2012), No. 9, pp. 7776778710.1016/j.eswa.2012.01.058Suche in Google Scholar

16 R. K.Roy: A Primer on the Taguchi Method, 2nd Ed., Society of Manufacturing Engineers, USA (2010)Suche in Google Scholar

17 N.Mandal, B.Doloi, B.Mondal, R.Das: Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and regression analysis, Measurement44 (2011), No. 10, pp. 2149215510.1016/j.measurement.2011.07.022Suche in Google Scholar

18 W. H.Yang, Y. S.Tarng: Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology84 (1998), No. 1–3, pp. 12212910.1016/s0924-0136(98)00079-xSuche in Google Scholar

19 S.Akıncıoğlu, H.Gökkaya, İ.Uygur: The effects of cryogenic-treated carbide tools on tool wear and surface roughness of turning of Hastelloy C22 based on Taguchi method, The International Journal of Advanced Manufacturing Technology82 (2015), No. 1–4, pp. 30331410.1007/s00170-015-7356-zSuche in Google Scholar

20 R.Autay, M.Kchaou, F.Dammak: Experimental investigation of the tribological behaviour of carbon and low-alloy steels sliding against HSS, Mechanics and Industry16 (2015), No. 1, pp. 1810.1051/meca/2014076Suche in Google Scholar

21 ASM Handbook Vol. 4: Heat Treating, 9th Ed., ASM, Materials Park, Ohio, USA (1991)Suche in Google Scholar

22 S.Khamel, N.Ouelaa, K.Bouacha: Analysis and prediction of tool wear, surface roughness and cutting forces in hard turning with CBN tool, Journal of Mechanical Science and Technology26 (2012), No. 11, pp. 3605361610.1007/s12206-012-0853-1Suche in Google Scholar

23 H.Aouici, A.Yallesem, A.Belbah, M. F.Ameur, M.Elbah: Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool, Sadhana – Academy Proceedings in Engineering Sciences38 (2013), No. 3, pp. 42944510.1007/s12046-013-0147-zSuche in Google Scholar

24 C.Donaldson, G. H.LeCain, V. C.Goold: Tool Design, 3rd Ed., McGraw-Hill, New York, USA (2003)Suche in Google Scholar

25 G. R.Nagpal: Machine Tool Engineering, 10th Ed., Khanna Publishers, New Delhi, India (2012)Suche in Google Scholar

26 S. SinghGill, H.Singh, R.Singh, J.Singh: Cryoprocessing of cutting tool materials – A review, The International Journal of Advanced Manufacturing Technology48 (2009), No. 1–4, pp. 17519210.1007/s00170-009-2263-9Suche in Google Scholar

27 P. G.Benardos, G. C.Vosniakos: Predicting surface roughness in machining: A review, International Journal of Machine Tools and Manufacture43 (2003), No. 8, pp. 83384410.1016/S0890-6955(03)00059-2Suche in Google Scholar

28 T. V. SreeramaReddy, T.Sornakumar, M. VenkataramaReddy: Turning studies of deep cryogenic treated P-40 tungsten carbide cutting tool inserts – Technical communication, Machining Science and Technology13 (2009), No. 2, pp. 26928110.1080/10910340902979754Suche in Google Scholar

29 H.-B.He, W.-Q.Han, H.-Y.Li, D.-Y.Li, J.Yang, T.Gu, T.Deng: Effect of deep cryogenic treatment on machinability and wear mechanism of TiAlN coated tools during dry turning, International Journal of Precision Engineering and Manufacturing15 (2014), No. 4, pp. 65566010.1007/s12541-014-0384-zSuche in Google Scholar

Published Online: 2017-08-28
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
  5. Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
  6. Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
  7. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
  8. Comparison of the welding behavior of P/M borated and I/M borated stainless steel
  9. Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
  10. Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
  11. Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
  12. Strength and mechanical response of C/C composite open-hole and bolted plates
  13. Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
  14. Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
  15. Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
  16. Surface roughness analysis of greater cutting depths during hard turning
  17. Properties of fine soils contaminated with gas oil
  18. Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111069/pdf?lang=de
Button zum nach oben scrollen