Surface roughness analysis of greater cutting depths during hard turning
-
Dilek Murat
Abstract
Literally, hard machining describes machining of parts having hardness over 45 HRC. Besides its advantages like high metal removal rate, easiness of adapting to complex part geometries, possibility of dry cutting; this operation, which can substitute grinding in most cases, has some disadvantages. One of them is the significant increase of surface roughness due to tool wear even when the tool life limit is not exceeded. In this study, considering hard turning praxes, higher depths of cut (0.5 to 1.0 mm) were examined when dry turning AISI D2 cold work tool steel, through-hardened to 62 HRC. TiN coated mixed ceramic inserts (Al2O3 + TiCN) were employed in the operations. Relationship between surface roughness and cutting parameters (cutting speed, feed and depth of cut) was modeled and analyzed using a Box-Behnken response surface methodology (RSM) design. A linear model best described this relationship. Despite the higher depths of cuts, the surface roughness values achieved were comparable to those in grinding operations. Finally, the optimal values of cutting parameters for minimum surface roughness were predicted.
Kurzfassung
Unter Hartdrehen wird wörtlich die Bearbeitung von Werkstoffen mit einer Härte über 45’ verstanden. Neben seinen Vorteilen, wie eine hohe Metallabtragsrate, eine einfache Anpassung von komplexen Geometrien der Teile, der Möglichkeit des Trockendrehens und dass diese Operation das Schleifen in den meisten Fällen ersetzen kann, hat sie auch einige Nachteile. Einer davon besteht in der signifikanten Steigerung der Oberflächenrauheit aufgrund des Werkzeugverschleißes, auch dann, wenn die Werkzeuglebensdauer nicht erreicht wurde. In der diesem Beitrag zugrundeliegenden Studie werden unter Berücksichtigung von Hartdrehpraktiken größere Schnitttiefen (0.5 bis 1.0 mm) untersucht, und zwar beim Drehen des Kaltarbeitsstahles AISI D2, der bis 62’ durchgehärtet wurde. Es wurden TiN-beschichtete, gemischte Keramikeinsätze (Al2O3 + TiCN) in den Bearbeitungsgängen verwendet. Das Verhältnis zwischen der Oberflächenrauheit und den Schneidparametern (Schnittgeschwindigkeit, Vorschub und Schnitttiefe) wurde mittels der Box-Behnken Response Surface Methode (RSM) designt und analysiert. Ein lineares Modell beschrieb dieses Verhältnis am besten. Trotz größerer Schnitttiefen waren die erreichten Oberflächenrauheitswerte vergleichbar mit denen bei Schleifprozessen. Schließlich wurden die optimalen Werte der Schneidparameter für die minimale Oberflächenrauheit vorhergesagt.
References
1 L.Laperrière, G.Reinhart (Eds.): CIRP Encyclopedia of Production Engineering, Springer, Berlin, Germany (2014)10.1007/978-3-642-20617-7Suche in Google Scholar
2 J. P.Davim (Ed.): Machining of Hard Materials, Springer, London, UK (2011)10.1007/978-1-84996-450-0Suche in Google Scholar
3 W.Grzesik: Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools, Wear265 (2008), No. 3–4, pp. 327–33510.1016/j.wear.2007.11.001Suche in Google Scholar
4 V. N.Gaitonde, S. R.Karnik, L.Figueira, J. P.Davim: Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts, International Journal of Refractory Metals and Hard Materials27 (2009), No. 4, pp. 754–76310.1016/j.ijrmhm.2008.12.007Suche in Google Scholar
5 H.Aouici, H.Bouchelaghem, M. A.Yallese, M.Elbah, B.Fnides: Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology, International Journal of Advance Manufacturing Technology73 (2014), No. 9–12, pp. 1775–178810.1007/s00170-014-5950-0Suche in Google Scholar
6 B.Sieben, T.Wagner, D.Biermann: Empirical modeling of hard turning of AISI 6150 steel using design and analysis of computer experiments, Production Engineering4 (2010), No. 2–3, pp. 115–12510.1007/s11740-010-0208-7Suche in Google Scholar
7 G.Bartarya, S. K.Choudhury: State of the art in hard turning, International Journal of Machine Tools and Manufacture53 (2012), No. 1, pp. 1–1410.1016/j.ijmachtools.2011.08.019Suche in Google Scholar
8 A.Agrawal, S.Goel, W. B.Rashid, M.Price: Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC), Applied Soft Computing30 (2015), pp. 279–28610.1016/j.asoc.2015.01.059Suche in Google Scholar
9 Z.Hessainia, A.Belbah, M. A.Yallese, T.Mabrouki, J. F.Rigal: On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations, Measurement46 (2013), No. 5, pp. 1671–168110.1016/j.measurement.2012.12.016Suche in Google Scholar
10 M. C.Cakir, C.Ensarioglu, I.Demirayak: Mathematical modeling of surface roughness for evaluating the effects of cutting parameters and coating material, Journal of Material Processing Technology209 (2009), No. 1, pp. 102–10910.1016/j.jmatprotec.2008.01.050Suche in Google Scholar
11 S. K.Shihab, Z. A.Khan, A.Mohammad, A. N.Siddiquee: Optimization of surface integrity in dry hard turning using RSM, Sadhana-Academy Proceedings in Engineering Science39 (2014), No. 5, pp. 1035–105310.1007/s12046-014-0263-4Suche in Google Scholar
12 P. I.Varela, C. S.Rakurty, A. K.Balaji: Surface integrity in hard machining of 300M steel: Effect of cutting-edge geometry on machining induced residual stresses, Procedia CIRP13 (2014), pp. 288–29310.1016/j.procir.2014.04.049Suche in Google Scholar
13 A. K.Sahoo, B.Sahoo: Performance studies of multilayer hard surface coatings (TiN/TiCN/Al2O3/TiN) of indexable carbide inserts in hard machining: Part II (RSM, grey relational and techno economical approach), Measurement46 (2013), No. 8, pp. 2868–288410.1016/j.measurement.2012.09.023Suche in Google Scholar
14 D. I.Lalwani, N. K.Mehta, P. K.Jain: Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel, Journal of Materials Processing Technology206 (2008), No. 1–3, pp. 167–17910.1016/j.jmatprotec.2007.12.018Suche in Google Scholar
15 V. N.Gaitonde, S. R.Karnik, L.Figueira, J. P.Davim: Analysis of machinability during hard turning of cold work tool steel (type: AISI D2), Materials and Manufacturing Processes24 (2009), No. 12, pp. 1373–138210.1080/10426910902997415Suche in Google Scholar
16 T.Tamizharasan, T.Selvaraj, A. NoorulHaq: Analysis of tool wear and surface finish in hard turning, The International Journal of Advanced Manufacturing Technology28 (2006), No. 7–8, pp. 671–67910.1007/s00170-004-2411-1Suche in Google Scholar
17 R.Kountanya, I.Al-Zkeri, T.Altan: Effect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of 100Cr6 steel, Journal of Materials Processing Technology209 (2009), No. 11, pp. 5068–507610.1016/j.jmatprotec.2009.02.011Suche in Google Scholar
18 H.Bouchelaghem, M. A.Yallese, A.Amirat, T.Mabrouki, J. F.Rigal: Experimental investigation and performance analyses of CBN insert in hard turning of cold work tool steel (D3), Machining Science and Technology14 (2010), No. 4, pp. 471–50110.1080/10910344.2010.533621Suche in Google Scholar
19 D.Singh, P. V.Rao: A surface roughness prediction model for hard turning process, The International Journal of Advanced Manufacturing Technology32 (2007), No. 11–12, pp. 1115–112410.1007/s00170-006-0429-2Suche in Google Scholar
20 J. P.Davim, L.Figueira: Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques, Materials & Design28 (2007), No. 4, pp. 1186–119110.1016/j.matdes.2006.01.011Suche in Google Scholar
21 H.Aouici, M. A.Yallese, K.Chaoui, T.Mabrouki, J. F.Rigal: Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization, Measurement45 (2012), No. 3, pp. 344–35310.1016/j.measurement.2011.11.011Suche in Google Scholar
22 M.Sarikaya, A.Gullu: Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL, Journal of Cleaner Production65 (2014), pp. 604–61610.1016/j.jclepro.2013.08.040Suche in Google Scholar
23 A. I.Khuri, J. A.Cornell: Response Surfaces: Designs and Analyses, 2nd Ed.CRC Press, Cambridge, UK (1996)Suche in Google Scholar
24 I.Asilturk, H.Akkus: Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method, Measurement44 (2011), No. 9, pp. 1697–170410.1016/j.measurement.2011.07.003Suche in Google Scholar
25 N.Senthilkumar, T.Tamizharasan, V.Anandakrishnan: Experimental investigation and performance analysis of cemented carbide inserts of different geometries using Taguchi based grey relational analysis, Measurement58 (2014), pp. 520–53610.1016/j.measurement.2014.09.025Suche in Google Scholar
26 A.Srithar, K.Palanikumar, B.Durgaprasad: Experimental investigation and surface roughness analysis on hard turning of AISI D2 steel using coated carbide insert, Procedia Engineering97 (2014), pp. 72–7710.1016/j.proeng.2014.12.226Suche in Google Scholar
27 A. K.Sahoo, B.Sahoo: Performance studies of multilayer hard surface coatings (TiN/TiCN/Al2O3/TiN) of indexable carbide inserts in hard machining: Part I (An experimental approach), Measurement46 (2013), No. 8, pp. 2854–286710.1016/j.measurement.2013.03.024Suche in Google Scholar
28 M.Sirvanc: Design of experiments for quality, Literature Yayıncılık, Turkey (1997) (in Turkish)Suche in Google Scholar
29 N.Gursakal: Six sigma: Customer-oriented management, Nobel Yayın Dağıtım, Turkey (2005) (in Turkish)Suche in Google Scholar
30 D. C.Montgomery: Introduction to Statistical Quality Control, 4th Ed., John Wiley & Sons, New York, USA (2001)Suche in Google Scholar
31 M.Morris: Design of Experiments: An Introduction Based on Linear Models, 1st Ed., Chapman and Hall, CRC, Cambridge, UK (2010)Suche in Google Scholar
32 D. C.Montgomery: Design and Analysis of Experiments, 5th Ed., Wiley, New York, USA (2001)Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
- Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
- Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
- Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
- Comparison of the welding behavior of P/M borated and I/M borated stainless steel
- Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
- Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
- Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
- Strength and mechanical response of C/C composite open-hole and bolted plates
- Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
- Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
- Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
- Surface roughness analysis of greater cutting depths during hard turning
- Properties of fine soils contaminated with gas oil
- Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
- Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
- Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
- Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
- Comparison of the welding behavior of P/M borated and I/M borated stainless steel
- Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
- Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
- Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
- Strength and mechanical response of C/C composite open-hole and bolted plates
- Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
- Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
- Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
- Surface roughness analysis of greater cutting depths during hard turning
- Properties of fine soils contaminated with gas oil
- Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load