Startseite Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy

  • Jian Zhang , Ruxia Liu , Qinqin Wei , Guoqiang Luo , Qiang Shen und Lianmeng Zhang
Veröffentlicht/Copyright: 28. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The combination of W and Ta is expected to be highly beneficial for many applications from aerospace, weapons, military and nuclear industry. In this paper, W and Ta alloys were successfully diffusion bonded with Ni interlayer. The process of the formation of W/Ni/Ta diffusion bonded joints was investigated by means of scanning electron microscopy, X-ray diffraction system, electron probe micro-analyzer, energy dispersive spectrometry and shear strength measurement. The results show that the shear strength increases when the bonding temperature increases and exhibits a maximum value of 244 MPa at 930 °C. The bonding of W/Ni can be attributed to the bonding of Ni to tungsten grains and the bonding of Ni to a Ni-Fe-binder mainly by elemental diffusion. The fracture takes place in the Ni/Ta interface and Ni3Ta and Ni2Ta intermetallic compounds are formed on the fracture surfaces.

Kurzfassung

Die Kombination von Wolfram und Tantal ist erwartungsgemäß sehr vorteilhaft für viele Anwendungen in der Raumfahrt, für Waffen sowie für die Militär- und Nuklearindustrie. In der diesem Beitrag zugrundeliegenden Studie wurden Wolfram- und Tantal-Legierungen erfolgreich mit einer Nickel-Zwischenlage verbunden. Der Ausbildungsprozess der W/Ni/Ta-Diffusionsverbindungen wurde mittels Rasterelektronenmikroskopie, Röntgendiffraktometrie, Elektronenprobenmikroanalysator, energiedispersiver Spektrometrie und Scherfestigkeitsmessungen untersucht. Die Ergebnisse zeigen, dass die Scherfestigkeit ansteigt, wenn die Temperatur beim Diffusionsbonden erhöht wird und erreicht einen maximalen Wert von 244 MPa bei 930 °C. Die Verbindung W/Ni kann auf eine Bindung von Nickel an Wolframkörner zurückgeführt werden und die Bindung von Nickel zum Ni-Fe-Binder entsprechend auf elementare Diffusion. Der Bruch bildet sich in der Ni/Ta Zwischenschicht und es werden die intermetallischen Verbindungen Ni3Ta und Ni2Ta auf den Bruchoberflächen gebildet.


*Correspondence Address, Prof. Dr. Jian Zhang, The State Key Laboratory of Advanced Technology, for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China, E-mail:

Assoc. Prof. Jian Zhang, born in 1984, is Associate Professor at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology. His research field includes diffusion bonding and metal materials.

Ruxia Liu, born in 1991, is a doctoral student in the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China. She received her Master's degree in Materials Science and Engineering in 2013. Her research interest is metal matrix composites.

Qinqin Wei, is a doctoral student in the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China. She received her Master's degree in Materials Science and Engineering in 2010. Her research interest is diffusion bonding of dissimilar materials.

Prof. Guoqiang Luo is Professor at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China. His research field includes diffusion bonding and metal materials.

Prof. Qiang Shen has been Professor at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China. His areas of expertise include corrosion of metals and alloys, welding and metal joining, stainless steels and high temperature materials.

Prof. Lianmeng Zhang is Professor at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology, China. He has been Vice-President of Wuhan University of Technology since 2000. His areas of expertise include corrosion of metals and alloys, welding and metal joining.


References

1 P.Norajitraa, L. V.Boccaccinia, A.Gervashb, R.Giniyatulinb, N.Holsteina, T.Ihlia, G.Janeschitza, W.Kraussa, R.Kruessmanna, V.Kuznetsovb, A.Makhankovb, I.Mazulb, A.Moeslanga, I.Ovchinnikovb, M.Rietha, B.Zeep: Development of a helium-cooled divertor: Material choice and technological studies, Journal of Nuclear Materials367 (2007), pp. 14161421j.jnucmat.2007.04.027Suche in Google Scholar

2 M.Kawai, K.Kikuchi, H.Kurishita, J. F.Li, M.Furusaka: Fabrication of a tantalum-clad tungsten target for KENS, Journal of Nuclear Materials296 (2001), pp. 312320S0022-3115(01)00533-5Suche in Google Scholar

3 S.Kundu, G.Thirunavukarasu, S.Chatterjee, B.Mishra: Effect of bonding temperature on phase transformation of diffusion-bonded joints of duplex stainless steel and Ti-6Al-4 V using nickel and copper as composite intermediate metals, Metallurgical and Materials Transactions A46 (2015), pp. 5756577110.1007/s11661-015-3142-7Suche in Google Scholar

4 L. M.Liu, X. J.Liu, S. H.Liu: Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer, Scripta Materialia55 (2006), pp. 383386scriptamat.2006.04.025Suche in Google Scholar

5 L.Liu, F. J.Wu: Atomic diffusion behavior in W/Cu diffusion bonding process, Journal of Fusion Energy34 (2015), pp. 769773s10894-015-9884-9Suche in Google Scholar

6 J.Zhang, Y.Xiao, G. Q.Luo, Q.Shen, L. M.Zhang: Effect of Ni interlayer on strength and microstructure of diffusion-bonded Mo/Cu joints, Materials Letters66 (2012), pp. 113116matlet.2011.08.077Suche in Google Scholar

7 C. B.Wang, Q.Shen, Z. G.Zhou, L. M.Zhang: Diffusion welding of 93W alloy to OFC and structural control of 93W/OFC joint, Journal of Materials Science40 (2005), pp. 21052107s10853-005-1247-xSuche in Google Scholar

8 J. F.Li, M.Kawai, K.Kikuchi, T.Igarashi, H.Kurishita, R.Watanabe, A.Kawasaki: Strength proof evaluation of diffusion-jointed W/Ta interfaces by small punch test, Journal of Nuclear Materials321 (2003), pp. 129134S0022-3115(03)00237-XSuche in Google Scholar

9 H. Y.Chen, L. M.Luo, J.Zhang, X.Zan, X. Y.Zhu, G. N.Luo, Y. C.Wu: Investigation on W/Fe diffusion bonding using Ti foil and Ti powder interlayer by SPS, Journal of Nuclear Materials467 (2015), pp. 566571jnucmat.2015.10.045Suche in Google Scholar

10 A.Elrefaey, W.Tillmann: Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer, Journal of Materials Processing Technology209 (2009), pp. 27462752jmatprotec.2008.06.014Suche in Google Scholar

11 O.Torun, A.Karabulut, B.Baksan: Diffusion bonding of AZ91 using a silver interlayer, Materials and Design29 (2008), pp. 20432046matdes.2008.04.003Suche in Google Scholar

12 R.Cury, J. M.Joubert, S.Tusseau-Nenez, E.Leroy, A.Allavena-Valette: On the existence and the crystal structure of Ni 4 W, NiW and NiW 2 compounds, Intermetallics17 (2009), pp. 174178intermet.2008.11.001Suche in Google Scholar

13 P.Choi, T.Al-Kassab, F.Gartner, H.Kreye, R.Kirchheim: Thermal stability of nanocrystalline nickel–18 at.-% tungsten alloy investigated with the tomographic atom probe, Materials Science and Engineering A353 (2003), pp. 7479S0921-5093(02)00670-6Suche in Google Scholar

14 T.Nasu, M.Sakurai, T.Kamiyama, T.Usuki, O.Uemura, K.Tokumitsu, T.Yamasaki: Structural comparison of M–W (M = Fe, Ni) alloys produced by electro-deposition and mechanical alloying, Materials Science and Engineering A375 (2004), pp. 163170msea.2003.10.144Suche in Google Scholar

15 Z. J.Zhang, X. Y.Huang, Z. X.Zhang: Hexagonal metastable phase formation in Ni 3 RM (RM = Mo, Nb, Ta) multilayered films by solid-state reaction, Acta Materialia46 (1998), pp. 41894194S1359-6454(98)00101-3Suche in Google Scholar

16 B.Qin, G. M.Sheng, J. M.Huang, B.Zhou, S. Y.Qiu, C.Li: Phase transformation diffusion bonding of titanium alloy with stainless steel, Materials Characterization56 (2006), pp. 3238matchar.2005.09.015Suche in Google Scholar

Published Online: 2017-08-28
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
  5. Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
  6. Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
  7. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
  8. Comparison of the welding behavior of P/M borated and I/M borated stainless steel
  9. Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
  10. Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
  11. Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
  12. Strength and mechanical response of C/C composite open-hole and bolted plates
  13. Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
  14. Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
  15. Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
  16. Surface roughness analysis of greater cutting depths during hard turning
  17. Properties of fine soils contaminated with gas oil
  18. Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111066/pdf?lang=de
Button zum nach oben scrollen