Startseite Comparison of the welding behavior of P/M borated and I/M borated stainless steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comparison of the welding behavior of P/M borated and I/M borated stainless steel

  • Tanniru Rajesh Babu , Sadayan Rajendra Boopathy , Sajja Rama Koteswara Rao , Guttikonda Raja Kumar und Gabbita Durga Janaki Ram
Veröffentlicht/Copyright: 28. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Borated stainless steels are being used to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. Borated stainless steels fabricated via powder metallurgy (P/M) route (grade A) exhibit superior neutron absorption, enhanced toughness and ductility compared to cast ingot metallurgy (I/M) steels (grade B), due to fine and uniform dispersion of borides. In this study, welds were made using both 304B grade A and grade B materials by gas tungsten arc welding and activated gas tungsten arc welding processes. The effect of the activated flux on the bead geometry, microstructure and mechanical properties was investigated and compared. The heat input required for P/M steel material to produce full penetration welds has been found to be significantly higher compared to I/M steel, while all welds exhibited high joint efficiencies. Metallographic examinations revealed that no porosities and shrinkage cracks have been observed either in the fusion zone or in partially melted zone of the weldments. The fusion zone structure of 304 P/M type consists of a higher amount of eutectics with less number of austenite dendrites compared to I/M type. Both P/M and I/M steel welds exhibited partially melted zones adjacent to fusion zone. P/M steel welds were found to fracture in the partially melted zone, where a significant loss in hardness was noticed due to irregular boride eutectics, while in case of I/M steel welds, failure occurred in base material. It has been concluded that the P/M steel 304B grade A exhibits good GTA weldability compared to grade B material.

Kurzfassung

Borierte hochlegierte Stähle werden verwendet, um die Neutronenkritikalität in Reaktoren zu kontrollieren, so werden sie als Kontrollstücke, Schutzwerkstoff, Lagergestelle für verbrauchte Brennelemente und Transportgebinde verwendet. Borierte Stähle, die mittels Pulvermetallurgie (P/M) hergestellt wurden (Güte A), weisen eine sehr gute Neutronenabsorption, eine verbesserte Zähigkeit und Duktilität im Vergleich zu metallurgisch vergossenen (Cast Ingot Metallurgy (I/M)) Stählen (Güte B) auf, und zwar aufgrund der feinen und gleichmäßigen Verteilung der Boride. In der diesem Beitrag zugrundeliegenden Studie wurden Schweißungen aus beiden Stählen des Typs 304B, Güte A und Güte B, mittels des Wolfram Inertgas und mittels des Wolfram Aktivgas Prozesses hergestellt. Die Auswirkungen des Aktivgases auf die Schweißnahtgeometrie, die Mikrostruktur und die mechanischen Eigenschaften wurden untersucht und verglichen. Der erforderliche Wärmeeintrag für den P/M-Stahl zur Herstellung voll durchgeschweißter Verbindungen stellte sich im Vergleich zum I/M-Stahl als signifikant höher heraus, während alle Schweißungen eine hohe Verbindungseffizienz aufwiesen. Metallografische Untersuchungen zeigten, dass keine Porosität und keine Schwindungsrisse auftraten, und zwar weder im Schweißgut noch in der Wärmeeinflusszone. Das Schweißgutgefüge des Stahles 304 P/M enthält eine höhere Anzahl an Eutektika mit einer geringeren Anzahl austenitischer Dendriten im Vergleich zum I/M-Typ. Beide Stahlschweißungen, P/M und I/M, zeigten partiell aufgeschmolzene Zonen neben der Schmelzzone, wo ein signifikanter Härteverlust beobachtet wurde, und zwar aufgrund der irregulären Borid-Eutektika, während im Fall der I/M-Stahlschweißungen ein Versagen im Grundwerkstoff auftrat. Daraus wurde geschlossen, dass der Stahl 304B des Typs P/M (Güte A) im Vergleich zum Werkstoff Güte B eine gute Schweißbarkeit mittels Aktivgas aufweist.


*Correspondence Address, Asst. Prof. T. Rajesh Babu, Tagore Engineering College, Rathinamangalm, Melakottayiur Post, Chennai 600127, E-mail: , , , ,

Assistant Prof. Tanniru Rajesh Babu, born in 1984, completed his ME in Manufacturing Systems and Management at Anna University, Chennai, India. He is working as Assistant Professor in the Department of Mechanical Engineering, Tagore Engineering College, Chennai, India. He is pursuing his PhD in the Faculty of Mechanical Engineering at Anna University, Chennai under the guidance of Prof S. Rajendra Boopathy and Prof. S. R. Koteswara Rao.

Prof. Dr. Sadayan Rajendra Boopathy, born in 1961, received his PhD in Mechanical Engineering from Anna University, Chennai, India. He has published more than 15 papers in international journals. He has around 29 years of professional experience in teaching and research. Presently, he is working as Professor in the Department of Mechanical Engineering, Anna University, Chennai.

Prof. Dr. Sajja Rama Koteswara Rao, born in 1966, received his PhD in Metallurgical and Materials Engineering from IIT Madras, Chennai, India in 2005. He has published more than 25 papers in international journals. He has around 20 years of professional experience in teaching and research. Presently, he is working as Professor in the Department of Mechanical Engineering, SSN College of Engineering, Kalavakkam, Chennai, India.

Associate Prof. Dr. Guttikonda Raja Kumar, born in 1980, received his PhD in Mechanical Engineering from Anna University, Chennai, India. He has published more than six papers in international journals. He has around 13 years of professional experience in teaching and research. Presently, he is working as Associative Professor in the Department of Mechanical Engineering, Swarna Bharathi Institute of Science and Technology, Khammam, Telangana, India.

Associate Professor Dr. G. D. Janaki Ram, born in 1968, received his PhD in Metallurgical and Materials Engineering from IIT in Madras, Chennai, India in 2005. He completed his post-doctoral studies at Utah State University, USA. He has published more than 53 papers in international journals. He has around 20 years of professional experience in teaching, industry and research. Presently, he is working as Associate Professor in the Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India.


References

1 ASTM A887: Specifications on borated stainless steel, ASTM, West Conshohocken, Pennsylvania, USA (2009)Suche in Google Scholar

2 H. J.Goldschmidt: Effect of boron additions to austenitic stainless steels – Part II – Solubility of boron in 18 % Cr, 15 % Ni austenitic steel, Journal of the Iron and Steel Institute209 (1971), pp. 900911Suche in Google Scholar

3 S.Yamamoto, M.Honda, Y.Kobayashi, T.Sakiyama, Y.Ehira, T.Nagamine: Borated stainless steels for thermal neutron shielding, Jr. Thermal & Nuclear Power Generation41 (1990), pp. 11491157Suche in Google Scholar

4 T. D.Park, K. K.Baek, D. S.Kim: PWHT effect on the mechanical properties of borated stainless steel GTA weldments for nuclear shield, Metal Materials International3 (1997), No. 1, pp. 465010.1007/BF03026105Suche in Google Scholar

5 J. J. S.Dilip, G. D. JanakiRam: Microstructures and properties of friction freeform fabricated borated stainless steel, JMEPEG22 (2013), pp. 3034304210.1007/s11665-013-0605-0Suche in Google Scholar

6 C. V.Robino, M. J.Cieslak: Fusion welding of a modern borated stainless steel, Welding Journal (including welding research supplement)76 (1997), No. 1, pp. 122310.2172/10183280Suche in Google Scholar

7 C. V.Robino, M. J.Cieslak: High-temperature metallurgy of advanced borated stainless steels, Metallurgical and Materials Transactions A26 (1995), No. 7, pp. 1673168510.1007/BF02670754Suche in Google Scholar

8 F.Xue, Z. F.Luo, W. W.Yu, Z. X.Wang, L.Zhang: Investigation on microstructure and impact properties of borated stainless steel for high density storage racks, Advanced Materials Research197–198 (2011), pp. 1520152310.4028/www.scientific.net/AMR.197-198.1520Suche in Google Scholar

9 T.Shinoda, H.Miyake, T.Matsuzaka, T.Matsumoto, H.Kanai: Hot cracking susceptibility of boron modified AISI 304 austenitic stainless steel welds, Materials Science and Technology8 (1992), No. 10, pp. 91392110.1179/026708392790169777Suche in Google Scholar

10 J. C.Thornley: CO2 welding Fe-Ni-Mo-C-Cu sintered steels, Welding design and metal fabrication12 (1973), No. 11, pp. 399402Suche in Google Scholar

11 J. A.Hamill: P/M joining processes – Materials and techniques, International Journal of Powder Metallurgy27 (1991), No. 14, pp. 119Suche in Google Scholar

12 K.Jayabharat, M.Ashafaq, P.Venugopal, D. R. G.Achar: Investigation on the continuous drive friction welding of sintered powder metallurgical (P/M) steel and wrought copper parts, Materials Science and Engineering A454–455 (2007), pp. 11412310.1016/j.msea.2006.11.026Suche in Google Scholar

13 G. RajaKumar, G. D.Ram, S. R. K.Rao: Microstructure and mechanical properties of borated stainless steel (304B) GTA and SMA welds, La Metallurgia Italiana5 (2015), pp. 4752Suche in Google Scholar

14 B.Shanmugarajan, J. N.Chary, G.Padmanabham, B.Arivazhagan, S. K.Albert, A. K.Bhaduri: Studies on autogenous laser welding of type 304B4 borated stainless steel, Journal of Optics and Lasers in Engineering51 (2013), pp. 1272127710.1016/j.optlaseng.2013.05.004Suche in Google Scholar

15 G. RajaKumar, G. D. JanakiRam, S. R. K.Rao: Effect of activated flux and nitrogen addition on the bead geometry of borated stainless steel GTA welds, Materials and Technology50 (2016), No. 3, pp. 35736410.17222/mit.2015.052Suche in Google Scholar

16 Patent No. PCT/IN06/00442/dt. 8/11/06: Tungsten Inert Gas Welding Flux for Enhancing Penetration in Single Pass for Austenitic Stainless Steels, India (2016)Suche in Google Scholar

Published Online: 2017-08-28
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
  5. Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
  6. Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
  7. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
  8. Comparison of the welding behavior of P/M borated and I/M borated stainless steel
  9. Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
  10. Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
  11. Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
  12. Strength and mechanical response of C/C composite open-hole and bolted plates
  13. Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
  14. Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
  15. Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
  16. Surface roughness analysis of greater cutting depths during hard turning
  17. Properties of fine soils contaminated with gas oil
  18. Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111065/pdf
Button zum nach oben scrollen