Startseite Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components

  • Özler Karakaş und Jarosław Szusta
Veröffentlicht/Copyright: 28. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present study, monotonic tension tests and low cycle fatigue tests were performed on aluminum alloy EN AW-2024-T3 under various operating temperatures. The results were assessed in order to determine the Bauschinger effect in the aluminum alloy under elevated temperatures. Findings of monotonic tests served as a basis to compare the influence of temperature on mechanical properties of the material. The results of the cyclic tests were used to determine the Bauschinger effect. Finally, the changes in the presence of the effect at various testing temperatures were presented.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden monotone Zugversuche und Schwingfestigkeitsversuche mit niedrigen Lastwechselzahlen mit der Aluminiumlegierung EN AW-2024-T3 bei verschiedenen Temperaturen durchgeführt. Anhand der Ergebnisse wird der Bauschinger-Effekt bei dieser Aluminiumlegierung unter erhöhten Temperaturen bestimmt und untersucht. Die Ergebnisse der monotonen Zugversuche dienten als Basis, um den Einfluss der Temperatur auf die mechanischen Eigenschaften zu vergleichen. Außerdem wurden die Ergebnisse der zyklischen Versuche verwendet, um den Bauschinger-Effekt zu ermitteln. Abschließend wird die Temperaturabhängigkeit des vorhandenen Bauschinger-Effektes dargestellt.


*Correspondence Address, Assoc. Prof. Dr. Özler Karakaş, Mechanical Engineering Department, Engineering Faculty, Pamukkale University, 20070 Kinikli, Denizli, Turkey, E-mail:

Associate Prof. Dr. Özler Karakaş, born in 1976, graduated in the Mechanical Engineering Department of Pamukkale University, Denizli, Turkey in 1999 and achieved his MSc degree in 2002. In 2006, he finished his PhD degree with a bilateral agreement between Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany, and Pamukkale University about application of the notch stress concept in the fatigue strength evaluation of welded structures from wrought magnesium alloys. His proposals of allowable stress for fatigue strengths of magnesium welded joints with 0.05 mm and 1 mm notch radii have been accepted by International Institute of Welding (IIW). In 2017, he was a guest editor of a special issue of International Journal of Fatigue titled “Fatigue Assessment of Welded Joints by Modern Concepts”. His main scientific topics are fatigue design of welded structures and low medium high cycle fatigue of materials. He is working in Pamukkale University as Associate Professor.

Associate Prof. Dr. Jaroslaw Szusta, born in 1977 graduated in the Mechanical Engineering Department of Bialystok University of Technology, Poland in 2002. He finished his PhD degree at the same university on the topic of damage accumulation modeling under uniaxial low cycle fatigue loading in 2008. The focus of his scientific interests is the low cycle fatigue and fracture of materials. He is working in Bialystok University of Technology as Associate Professor.


References

1 T. S.Srivatsan, D.Kolar, P.Magnusen: The cyclic fatigue and final fracture behavior of aluminum alloy 2524, Materials & Design23 (2002), No. 2, pp. 12913910.1016/S0261-3069(01)00070-XSuche in Google Scholar

2 F. J.Carpio, D.Araújo, F. J.Pacheco, D.Méndez, A. J.Garcí, M. P.Villar, R.García, D.Jiménez, L.Rubio: Fatigue behaviour of laser machined 2024 T3 aeronautic aluminium alloy, Applied Surface Science208 (2003), pp. 19419810.1016/S0169-4332(02)01369-7Suche in Google Scholar

3 J.May, D.Amberger, M.Dinkel, H. W.Höppel, M.Göken: Monotonic and cyclic deformation behaviour of ultrafine-grained aluminium, Materials Science and Engineering A483 (2008), pp. 48148410.1016/j.msea.2006.12.177Suche in Google Scholar

4 S.Soubielle, L.Salvo, F.Diologent, A.Mortensen: Fatigue and cyclic creep of replicated microcellular aluminium, Materials Science and Engineering A528 (2011), No. 6, pp. 2657266310.1016/j.msea.2010.12.007Suche in Google Scholar

5 A. R.Emami, S.Begum, D. L.Chen, T.Skszek, X. P.Niu, Y.Zhang, F.Gabbianelli: Cyclic deformation behavior of a cast aluminum alloy, Materials Science and Engineering A516 (2009), No. 1, pp. 314110.1016/j.msea.2009.04.037Suche in Google Scholar

6 A. L.Kermanidis, S. P.Pantelakis: Fatigue crack growth analysis of 2024 T3 aluminium specimens under aircraft service spectra, Fatigue and Fracture of Engineering Materials and Structures24 (2001), No. 10, pp. 69971010.1046/j.1460-2695.2001.00435.xSuche in Google Scholar

7 A.Tzamtzis, A. T.Kermanidis: Improvement of fatigue crack growth resistance by controlled overaging in 2024-T3 aluminium alloy, Fatigue and Fracture of Engineering Materials and Structures37 (2014), No. 7, pp. 75176310.1111/ffe.12163Suche in Google Scholar

8 K. Y. G.McCullough, N. A.Fleck, M. F.Ashby: The stress-life fatigue behaviour of aluminium alloy foams, Fatigue and Fracture of Engineering Materials and Structures23 (2000), No. 3, pp. 19920810.1046/j.1460-2695.2000.00261.xSuche in Google Scholar

9 A.Monsalve, M.Paez, M.Toledano, A.Artigas, Y.Sepulveda, Y. N.Valencia: S-N-P curves in 7075 T7351 and 2024 T3 aluminium alloys subjected to surface treatments, Fatigue and Fracture of Engineering Materials and Structures30 (2007), No. 8, pp. 74875810.1111/j.1460-2695.2007.01134.xSuche in Google Scholar

10 Ö.Karakaş, J.Szusta: Monotonic and low cycle fatigue behaviour of 2024-T3 aluminium alloy between room temperature and 300 °C for designing VAWT components, Fatigue and Fracture of Engineering Materials and Structures39 (2016), No. 1, pp. 9510910.1111/ffe.12336Suche in Google Scholar

11 J.Szusta, A.Seweryn: Damage accumulation modeling under uniaxial low cycle fatigue at elevated temperatures, Engineering Failure Analysis56 (2015), pp. 47448310.1016/j.engfailanal.2014.11.026Suche in Google Scholar

12 L. P.Borrego, L. M.Abreu, J. M.Costa, J. M.Ferreira: Analysis of low cycle fatigue in AlMgSi aluminium alloys, Engineering Failure Analysis11 (2004), No. 5, pp. 71572510.1016/j.engfailanal.2003.09.003Suche in Google Scholar

13 Z. N.Haji: Low cycle fatigue behavior of aluminum alloys AA2024-T6 and AA7020-T6, Diyala Journal of Engineering Sciences (2010), pp. 127137Suche in Google Scholar

14 Q.Zhang, Z.Zuo, J.Liu: High-temperature low-cycle fatigue behaviour of a cast Al-12Si-CuNiMg alloy, Fatigue and Fracture of Engineering Materials and Structures36 (2013), No. 7, pp. 62363010.1111/ffe.12029Suche in Google Scholar

15 S.Giancane, A.Chrysochoos, V.Dattoma, B.Wattrisse: Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy, Theoretical and Applied Fracture Mechanics52 (2009), No. 2, pp. 11712110.1016/j.tafmec.2009.08.004Suche in Google Scholar

16 T. S.Srivatsan, D.Kolar, P.Magnusen: Influence of temperature on cyclic stress response, strain resistance, and fracture behavior of aluminum alloy 2524, Materials Science and Engineering A314 (2001), No. 1, pp. 11813010.1016/S0921-5093(00)01912-2Suche in Google Scholar

17 K.Yu, W.Li, S.Li, J.Zhao: Mechanical properties and microstructure of aluminum alloy 2618 with Al 3 (Sc, Zr) phases, Materials Science and Engineering A368 (2004), No. 1, pp. 889310.1016/j.msea.2003.09.092Suche in Google Scholar

18 D. A.Clark, W. S.Johnson: Temperature effects on fatigue performance of cold expanded holes in 7050-T7451 aluminum alloy, International Journal of Fatigue25 (2003), No. 2, pp. 15916510.1016/S0142-1123(02)00070-1Suche in Google Scholar

19 E. A.De Bartolo, B. M.Hillberry: Effects of constituent particle clusters on fatigue behavior of 2024-T3 aluminum alloy, International Journal of Fatigue20 (1998), No. 10, pp. 72773510.1016/S0142-1123(98)00041-3Suche in Google Scholar

20 S. C.Bergsma, M. E.Kassner, X.Li, M. A.Wall: Strengthening in the new aluminum alloy AA 6069, Materials Science and Engineering A254 (1998), No. 1, pp. 11211810.1016/S0921-5093(98)00701-1Suche in Google Scholar

21 J.Bauschinger: Über die Veränderungen der Elastizitätsgrenze und der Festigkeit des Eisens und Stahls durch Strecken, Quetschen, Erwärmen und Abkühlen und durch oftmals wiederholte Beanspruchungen, Mitt. Mech.-Tech. Lab. München13 (1886), No. 1Suche in Google Scholar

22 R. P.Skelton, H. J.Maierand, H. J.Christ: The Bauschinger effect, Masing model and the Ramberg-Osgood relation for cyclic deformation in metals, Materials Science and Engineering A238 (1997), No. 2, pp. 37739010.1016/S0921-5093(97)00465-6Suche in Google Scholar

23 M.Buciumeanu, L.Palaghian, A. S.Miranda, F. S.Silva: Fatigue life predictions including the Bauschinger effect, International Journal of Fatigue33 (2011), No. 2, pp. 14515210.1016/j.ijfatigue.2010.07.012Suche in Google Scholar

24 C. M.Sonsino: The influence of cold forming on the low cycle fatigue behaviour of the fine grained structural steel Fe E 47 and the age-hardened aluminium alloy AlCuMg2, International Journal of Fatigue6 (1984), No. 3, pp. 17318310.1016/0142-1123(84)90035-5Suche in Google Scholar

25 S.Begum, D. L.Chen, S.Xu, A. A.Luo: Low cycle fatigue properties of an extruded AZ31 magnesium alloy, International Journal of Fatigue31 (2009), No. 4, pp. 72673510.1016/j.ijfatigue.2008.03.009Suche in Google Scholar

26 K.Guguloth, S.Sivaprasad, D.Chakrabarti, S.Tarafder: Low-cyclic fatigue behavior of modified 9Cr–1Mo steel at elevated temperature, Materials Science and Engineering A604 (2014), pp. 19620610.1016/j.msea.2014.02.076Suche in Google Scholar

27 S.Zang, L.Sun, C.Niu: Measurements of Bauschinger effect and transient behavior of a quenched and partitioned advanced high strength steel, Materials Science and Engineering A586 (2013), pp. 313710.1016/j.msea.2013.08.003Suche in Google Scholar

28 X. Z.Lin, D. L.Chen: Strain controlled cyclic deformation behavior of an extruded magnesium alloy, Materials Science and Engineering A496 (2008), No. 1, pp. 10611310.1016/j.msea.2008.05.016Suche in Google Scholar

29 S. F.Corbin, D. S.Wilkinson, J. D.Embury: The Bauschinger effect in a particulate reinforced Al alloy, Materials Science and Engineering A207 (1996), No. 1, pp. 11110.1016/0921-5093(95)10028-8Suche in Google Scholar

30 J. A.Del Valle, R.Romero, A. C.Picasso: Bauschinger effect in age-hardened Inconel X-750 alloy, Materials Science and Engineering A311 (2001), No. 1, pp. 10010710.1016/S0921-5093(01)00933-9Suche in Google Scholar

31 Ö.Karakas, A.Gülsöz, H.Kaufmann, C. M.Sonsino: Fatigue behaviour of welded joints from magnesium alloy (AZ31) according to the local strain concept, Ermüdungsverhalten einer geschweißten Magnesiumlegierung (AZ31) nach dem örtlichen Konzept, Materialwissenschaft und Werkstofftechnik41 (2010), No. 2, pp. 738210.1002/mawe.200900543Suche in Google Scholar

32 N. E.Dowling: Mean stress effects in stress-life and strain-life fatigue, SAE Technical Paper (2004), No. 2004-01-2227 10.4271/2004-01-2227Suche in Google Scholar

33 Ö.Karakaş: Consideration of mean-stress effects on fatigue life of welded magnesium joints by the application of the Smith-Watson-Topper and reference radius concepts, International Journal of Fatigue49 (2013), pp. 11710.1016/j.ijfatigue.2012.11.007Suche in Google Scholar

Published Online: 2017-08-28
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
  5. Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
  6. Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
  7. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
  8. Comparison of the welding behavior of P/M borated and I/M borated stainless steel
  9. Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
  10. Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
  11. Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
  12. Strength and mechanical response of C/C composite open-hole and bolted plates
  13. Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
  14. Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
  15. Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
  16. Surface roughness analysis of greater cutting depths during hard turning
  17. Properties of fine soils contaminated with gas oil
  18. Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111064/pdf
Button zum nach oben scrollen