Home Effect of burnishing parameters on surface roughness and hardness
Article
Licensed
Unlicensed Requires Authentication

Effect of burnishing parameters on surface roughness and hardness

  • Hudayim Basak and Murat Yücel
Published/Copyright: December 22, 2016
Become an author with De Gruyter Brill

Abstract

Burnishing is used as the final operation in machining, and brings along advantages such as increase of hardness, resistance against material fatigue and abrasion resistance on the workpiece on which it is applied. Improving the surface roughness of workpiece, improvements on the surface hardness, increase of the abrasion resistance of the material, decreasing depths on the material surface which may cause cracks, etc., directly depend on parameters such as progression, number of passes, press amount and ball diameter used in burnishing operation. For this study, an apparatus was designed which has different heads for a burnishing operation of rotary pieces. The surface of an Al 6061-T6 alloy was subjected to a respective burnishing operation and the effect of the parameters (i. e., pressure force, progression, number of passes and ball diameter) used in the burnishing operation on the surface roughness and surface hardness was determined. In addition, an artificial neural network (ANN) and an adaptive neuro-fuzzy interference system (ANFIS) model are developed for these parameters. Both models provide accurate results that are comparable to the experimental results. However, the ANFIS based model appears more accurate, compared to the ANN based model with respect to the same conditions for the surface roughness and surface hardness.

Kurzfassung

Das Kugelpolieren wird als letzter Schritt in der maschinellen Bearbeitung eingesetzt und hat einige Vorteile, wie zum Beispiel einen Anstieg der Härte, des Widerstandes gegen mechanische Ermüdung und des Abrasionswiderstandes des Werkstücks, auf dem es angewandt wird. Die Verbesserung der Oberflächenrauheit, Verbesserungen der Oberflächenhärte, der Anstieg des Abrasionswiderstandes des Werkstoffes, abnehmende Tiefen in der Werkstoffoberfläche, wo Risse beginnen können, usw. hängen direkt von Parametern ab, wie zum Beispiel dem Vorschub, der Anzahl von Bearbeitungsgängen, der Höhe des Anpressdruckes und dem Kugeldurchmesser, der beim Kugelpolieren angewandt wird. In der diesem Beitrag zugrunde liegenden Studie wurde ein Apparat entwickelt und eingesetzt, auf dem verschiedene Köpfe angebracht wurden zur Kugelpolierbehandlung von Rundteilen. Die Oberfläche einer Aluminiumlegierung Al 6061-T6 wurde dem entsprechenden Polierprozess unterzogen und es wurden die Auswrikungen der Parameter (Anpresskraft, Vorschub, Zahl der Bearbeitungsgänge und Kugeldurchmesser) des Polierprozesses auf die Oberflächenrauheit und die Oberflächenhärte bestimmt. Zusätzlich wurde jeweils ein Modell basierend auf einem Artificial Neural Network (ANN) und einem Adaptive Neuro-Fuzzy Interference System (ANFIS) für diese Parameter entwickelt. Beide Modelle zeigen korrekte Ergebnisse, die mit den experimentellen Resultaten übereinstimmen. Das ANFIS-basierte Modell erscheint allerdings exakter im Vergleich zum ANN-basierten Modell in Bezug auf dieselben Bedingungen für die Oberflächenrauheit und die Oberflächenhärte.


*Correspondence Address, Assoc. Prof. Dr. Hudayim Basak, Industrial Design Engineering, Gazi University Technology Faculty, 06500 Teknikokullar, Ankara, Turkey, E-mail:

Associated Prof. Dr. Hüdayim Basak is working in the Department of Industrial Design Engineering, Technology Faculty at Gazi University, Ankara, Turkey. He obtained his PhD from Gazi University in 2000. His research interests include CAD/CAM, geometric modeling, computer graphics and software in CAD/CAM systems and manufacturing.

Associated Prof. Dr. Murat Yücel received his BSc, MSc and PhD degrees from Gazi University, Ankara, Turkey, in 2000, 2003 and 2008, respectively, and is currently working in the Department of Electical and Electronic Engineering. His main research interests include photonic devices, fiber optic sensing, artificial neural network, fuzzy logic and neuro fuzzy control.


References

1 H.Basak, H. H.Goktas: Burnishing process on Al alloy and optimization of surface roughness and surface hardness by fuzzy logic, Materials and Design30 (2009), No. 4, pp. 1275128110.1016/j.matdes.2008.06.063Search in Google Scholar

2 L.Gusel, R.Rudolf, B.Kosec: Analysis of a strain rate field in cold formed material using the visioplasticity method, Metalurgija48 (2009), No. 2, pp. 103107Search in Google Scholar

3 B.Karpe, B.Kosec, T.Kolenko, M.Bizjak: Heat transfer analyses of continuous casting by free jet meltspinning device, Metalurgija50 (2011), No. 1, pp. 1316Search in Google Scholar

4 D.Vukelic, D.Miljanic, S.Randjelovic, I.Budak, D.Dzunic, M.Eric, M.Pantic: A burnishing process based on the optimal depth of workpiece penetration, Materials and Technology47 (2013), No. 1, pp. 4351Search in Google Scholar

5 H.Basak, S.Özkan, A.Taşkesen: Application of burnishing process on friction stir welding and investigation of the effect of burnishing process on the surface roughness, hardness and strength, Experimental Techniques35 (2011), No. 1, pp. 81610.1111/j.1747-1567.2009.00555.xSearch in Google Scholar

6 F.-J.Shiou, C.-C.Hsu: Surface finishing of hardened and tempered stainless tool steel using sequential ball grinding, ball burnishing and ball polishing processes on a machining centre, Journal of Materials Processing Technology205 (2008), No. 1–3, pp. 24925810.1016/j.jmatprotec.2007.11.244Search in Google Scholar

7 L.Liviu, N. V.Sorin, M.Loan: Effects of working parameters on surface finish in ball-burnishing of hardened steels, Precision Engineering29 (2005), No. 2, pp. 25325610.1016/j.precisioneng.2004.02.002Search in Google Scholar

8 K.Palka, A.Weron'ski, K.Zaleski: Mechanical properties and corrosion resistance of burnished X5CrNi 18-9 stainless steel, Journal of Achievements in Materials and Manufacturing Engineering16 (2006), pp. 5762Search in Google Scholar

9 F.Gharbi, S.Sghaier, H.Hamdi, T.Benameur: Ductility improvement of aluminum 1050A rolled sheet by a newly designed ball burnishing tool device, International Journal of Advanced Manufacturing Technology60 (2012), No. 1–4, pp. 879910.1007/s00170-011-3598-6Search in Google Scholar

10 M. H.El-Axir, O. M.Othman, A. M.Abodiena: Improvements in out-of-roundness and microhardness of inner surfaces by internal ball burnishing process, Journal of Materials Processing Technology196 (2008), No. 1–3, pp. 12012810.1016/j.jmatprotec.2007.05.028Search in Google Scholar

11 H.Basak: Design and manufacture of burnishing equipment and the burnishing process with Al 7075 T6 material, Strojniški Vestnik Journal of Mechanical Engineering53 (2007), No. 12, pp. 885897Search in Google Scholar

12 A.Sagbas: Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirability function, Advances in Engineering Software42 (2011), No. 11, pp. 99299810.1016/j.advengsoft.2011.05.021Search in Google Scholar

13 U.Esme: Use of grey based Taguchi method in ball burnishing process for the optimization of surface roughness and microhardness of AA7075 aluminum alloy, Materials and Technology44 (2010), No. 3, pp. 129135Search in Google Scholar

14 M.Korzynski, J.Lubas, S.Swirad, K.Dudek: Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool, Journal of Materials Processing Technology211 (2011), No. 1, pp. 849410.1016/j.jmatprotec.2010.08.029Search in Google Scholar

15 W.Grzesik, K.Zak: Producing high quality hardened parts using sequential hard turning and ball burnishing operations, Precision Engineering37 (2013), No. 4, pp. 84985510.1016/j.precisioneng.2013.05.001Search in Google Scholar

16 R.Avilés, J.Albizuri, A.Rodríguez, L. N.López de Lacalle: Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel, International Journal of Fatigue55 (2013), pp. 23024410.1016/j.ijfatigue.2013.06.024Search in Google Scholar

17 P.Balland, L.Tabourot, F.Degre, V.Moreau: An investigation of the mechanics of roller burnishing through finite element simulation and experiments, International Journal of Machine Tools & Manufacture65 (2013), pp. 293610.1016/j.ijmachtools.2012.09.002Search in Google Scholar

18 H.Korhonen, J.Laakkonen, J.Hakala, R.Lappalainen: Improvements in the surface characteristics of stainless steel workpieces by burnishing with an amorphous diamond-coated tip, Machining Science and Technology17 (2013), No. 4, pp. 59361010.1080/10910344.2013.837351Search in Google Scholar

19 J.Huuki, V. A. S.Laakso: Integrity of surfaces finished with ultrasonic burnishing, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture227 (2012), No. 1, pp. 455310.1177/0954405412462805Search in Google Scholar

20 F. L.Li, W.Xia, Z. Y.Zhou, J.Zhao, Z. Q.Tang: Analytical prediction and experimental verification of surface roughness during the burnishing process, International Journal of Machine Tools and Manufacture62 (2012), pp. 677510.1016/j.ijmachtools.2012.06.001Search in Google Scholar

21 J. N. M.Rao, K. R.Chenna, A.Reddy, P. V. R.Rao: The effect of roller burnishing on surface hardness and surface roughness on mild steel specimens, Indian Journal of Science and Technology1 (2014), No. 4, pp. 14214510.17485/ijst/2011/v4i9/30241Search in Google Scholar

22 P. S.Pa: Design of freeform surface finish using burnishing assistance following electrochemical finishing, Journal of Mechanical Science and Technology21 (2007), No. 9, pp. 1630163610.1007/BF03177386Search in Google Scholar

23 A. A. D.Sarhan, N. S. M.El-Tayeb: Investigating the surface quality of the burnished brass C3605-fuzzy rule-based approach, International Journal of Advanced Manufacturing Technology71 (2014), No. 5, pp. 1143115010.1007/s00170-013-5543-3Search in Google Scholar

24 M.Sayahi, S.Sghaier, H.Belhadjsalah: Finite element analysis of ball burnishing process: Comparisons between numerical results and experiments, International Journal of Advanced Manufacturing Technology67 (2013), No. 5, pp. 1665167310.1007/s00170-012-4599-9Search in Google Scholar

25 K. O.Low: Surface characteristics modification of polyoxymethylene and polyurethane using burnishing, Tribology Transactions54 (2010), No. 1, pp. 9610310.1080/10402004.2010.524347Search in Google Scholar

26 M. R. StalinJohn, B. K.Vinayagam: Optimization of nonlinear characteristics of ball burnishing process using Sugeno fuzzy neural system, Journal of the Brazilian Society of Mechanical Sciences and Engineering36 (2014), No. 1, pp. 10110910.1007/s40430-013-0060-8Search in Google Scholar

27 F. V.Celebi, M.Yucel, H. H.Goktas, K.Danisman: Intelligent modelling of alpha (α) parameter; comparison of ANN and ANFIS cases, Optoelectronics and Advanced Materials–Rapid Communications7 (2013), No. 5, pp. 470474Search in Google Scholar

28 M.Yucel, H. H.Goktas, C. F. V.Celebi: Design and implementation of fuzzy logic based automatic gain controller for EDFAs, Optik–International Journal for Light and Electron Optics125 (2014), No. 18, pp. 5450545310.1016/j.ijleo.2014.07.003Search in Google Scholar

29 K. Z.Soozanchi, M.Yaghobi, T. M. R.Akbarzadeh, M.Habibipour: Modeling and forecasting short-term electricity load based on multi adaptive neural-fuzzy inference system by using temperature, 2nd International Conference on Signal Processing and Intelligent Systems (ICSPS), China (2010), pp. 182210.1109/ICSPS.2010.5555848Search in Google Scholar

Published Online: 2016-12-22
Published in Print: 2017-01-05

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Influence of casting skin on the fatigue lifetime of ferritic ductile cast iron
  5. Tensile properties of continuous E-glass and basalt fiber reinforced polypropylene composites
  6. Corrosion behavior of welded Ni-Co-Cr-Si alloys during exposure in integrated coal gasification combined cycle syngas plants
  7. Tensile properties of friction welded AISI 4340 joints
  8. Vergleich der Spannungsrissbeständigkeit von Polyethylen und Polyethylenterephthalat als Werkstoffe für Verpackungen zum Transport von Gefahrgütern
  9. A model for high-cycle fatigue crack propagation
  10. Influences of extrusion temperatures on the wear behavior of magnesium alloy AZ31 fabricated by the extrusion shear process
  11. The buckling resistance of welded plate girders taking into account the influence of post-welding imperfections – Part 1: Parameter study
  12. Effect of burnishing parameters on surface roughness and hardness
  13. Mechanical properties of friction stir welded 5083 aluminum alloys
  14. Application of the Taguchi technique for the optimization of surface roughness and tool life during the milling of Hastelloy C22
  15. Optimization of cutting parameters for surface roughness in turning of studs manufactured from AISI 5140 steel using the Taguchi method
  16. Preparation and properties of a long time durable superhydrophilic titanium dioxide film obtained by a sol-gel process
  17. Mechanical properties of aluminum powder reinforced polypropylene
  18. Removal of amitraz from aqueous solutions on clay by adsorption technique at industrial scale
Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110963/html?lang=en&srsltid=AfmBOopavxvlaBy4H3jIDRvCxKo8wq0CXjNuZEtzE9ZuOtohpOrLnGK2
Scroll to top button