Startseite Influence of cutting parameters on the chip-tool interface temperature during the turning of Waspaloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of cutting parameters on the chip-tool interface temperature during the turning of Waspaloy

  • Yahya Isik , Abdil Kus und M. Cemal Cakir
Veröffentlicht/Copyright: 31. August 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Waspaloy, as a nickel superalloy, is a difficult-to-machine material used for gas turbine engine components that require considerable strength and corrosion resistance at high operating temperatures. The machining of nickel-based alloys generates high temperatures at the cutting tool edge. This research investigated the relationship between cutting parameters and cutting temperature, using a remote temperature measurement method employing an infrared thermometer. In addition, the effects of cutting parameters on surface roughness were examined. Experiments were conducted on Waspaloy AMS5708 superalloy samples and a PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. It was observed that the highest cutting speed and highest feed rate generated higher temperatures and higher surface roughness. Better surface roughness was obtained with the lowest feed rate, the highest cutting speed and the higher cutting depth. No cutting fluid was used in the experiments.

Kurzfassung

Waspaloy als austenitische Nickel-Superlegierung ist ein schwer zu bearbeitender Werkstoff, der für Gasturbinen-Komponenten eingesetzt wird, die eine bemerkenswerte Festigkeit und Korrosionswiderstand bei hohen Einsatztemperaturen benötigen. Die maschinelle Bearbeitung von Nickellegierungen generiert hohe Temperaturen an der Kante des Schneidwerkzeuges. In den diesem Beitrag zugrunde liegenden Forschungsarbeiten wurde das Verhältnis zwischen den Schneidparametern und der Schneidtemperatur untersucht, indem eine Temperaturfernmessung mittels Infrarot-Thermometer zum Einsatz kam. Zusätzlich wurden die Auswirkungen der Schneidparameter auf die Oberflächenrauheit untersucht. Die Experimente wurden mit der Waspaloy AMS5708 Superlegierung durchgeführt und es wurde ein PVD TiAlN-TiN-beschichteter WNVG 080404-IC907 Carbideinsatz beim Drehprozess verwendet. Die höchste Schneidgeschwindigkeit und die höchste Vorschubrate verursachten entsprechend höhere Temperaturen sowie eine höhere Oberflächenrauheit. Die beste Oberflächenrauheit ergab sich bei der niedrigsten Vorschubgeschwindigkeit, der höchsten Schnittgeschwindigkeit und einer großen Schnitttiefe. Es wurden keine Schneidmittel in den Experimenten verwendet.


§Correspondence Address, Associate Prof. Dr. Yahya Isik, Vocational School of Technical Sciences, Uludag University, 16059, Bursa, Turkey. E-mail:

Associate Professor Yahya Isik works at the Vocational School of Technical Science at Uludag University, Bursa, Turkey. He gtraduated with a BSc from the Faculty of Technical Education, Gazi University, Ankara, Turkey. He received his MSc and PhD in Mechanical Engineering from Uludag University, Bursa, Turkey. His main research areas are machinability of materials, Production Techniques, Cutting tools and their performance and Finite element analysis.

Associate Professor Abdil Kus is currently working at the Vocational School of Technical Sciences at Uludag University, Bursa, Turkey. He graduated with a BSc from the Faculty of Technical Education, Gazi University, Ankara, Turkey. He received his PhD degree in Mechanical Engineering from Uludag University, Bursa, Turkey. His research interests are computer based design and reverse engineering applications, production techniques and fiber reinforced polymer composites.

Prof. M. Cemal Cakir is currently working as Professor in the Department of Mechanical Engineering, Engineering Faculty, of Uludag University, Bursa, Turkey. He received his BSc degree from Uludag University, and his MSc from the Technical University of İstanbul, Turkey. He received his PhD degree in Mechanical Engineering from the University of Bath, UK. His research interests are machining, manufacturing automation, CAD/CAM, machine tools, production techniques, design for manufacturability and assembly.


References

1 T.Kitagawa, A.Kubo, K.Maekawa: Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6AI-6V-2Sn, Wear202 (1997), pp. 14214810.1016/S0043-1648(96)07255-9Suche in Google Scholar

2 P. C. B.Subhash, C. S. P.Rao: Modelling and prediction of surface roughness, cutting force and temperature while machining Nimonic-75 and Nicrofer C-263 superalloys using artificial neural network, International Journal of Mechanical Engineering and Technology3 (2012), No. 3, pp. 599613Suche in Google Scholar

3 H.Schultz, T.Moriwaki: High-speed machining, Ann. CIRP41 (1997), pp. 637643Suche in Google Scholar

4 E. O.Ezugwu: Key improvements in the machining of difficult-to-cut aerospace superalloys, Journal of Machine Tools and Manufacture45 (2005), pp. 1353136710.1016/j.ijmachtools.2005.02.003Suche in Google Scholar

5 J. T.Horng, N. M.Liu, T.Chiang: Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology, Journal of Materials Processing Technology208 (2008), pp. 53254110.1016/j.jmatprotec.2008.01.018Suche in Google Scholar

6 D. I.Lalwani, N. K.Mehta, P. K.Jain: Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel, Journal of Materials Processing Technology206 (2008), pp. 16717910.1016/j.jmatprotec.2007.12.018Suche in Google Scholar

7 F. W.Taylor: On the Art of Cutting Metals, Trans. ASME, New York, USA (1907)10.1038/scientificamerican01121907-25942suppSuche in Google Scholar

8 O.Sullivan, A.Cotterm: Temperature measurement in single point turning, Journal of Material Processing Technology118 (2001), pp. 30130810.1016/S0924-0136(01)00853-6Suche in Google Scholar

9 D. A.Stephenson: Tool-work thermocouple measurements: Theory and implementation issues, Journal of Engineering for Industry115 (1993), No. 4, pp. 43243710.1115/1.2901786Suche in Google Scholar

10 K.Yang, Y. C.Liang, K. N.Zheng, Q. S.Bai, W. Q.Chen: Tool edge radius effect on cutting temperature in micro-end-milling process, International Journal of Advance Manufacturing Technology52 (2011), No. 9–12, pp. 90591210.1007/s00170-010-2795-zSuche in Google Scholar

11 S.Yujing, S.Jie, L.Jiangfen, X.Qingchun: An experimental investigation of the influence of cutting parameters on cutting temperature in milling Ti6AI4 V by applying semi-artificial thermocouple, International Journal of Advance Manufacturing Technology70 (2014), pp. 76577310.1007/s00170-013-5294-1Suche in Google Scholar

12 G.Barrow: A review of experimental and theoretical techniques for assessing cutting temperatures, Ann. CIRP22 (1973), No. 2, pp. 203211Suche in Google Scholar

13 A. Y.Herchang, W.Yang: Heat transfer and life of metal cutting tools in turning, International Journal of Heat Mass Transfer41 (1998), No. 3, pp. 61362310.1016/S0017-9310(97)00105-1Suche in Google Scholar

14 R.Komanduri, Z. B.Hou: A review of the experimental techniques for the measurement of heat and temperature generated in some manufacturing processes and tribology, Tribology International34 (2001), pp. 653682S0301-679X(01)00068-8Suche in Google Scholar

15 M. A.Davies, T.Ueda, R. M.Saoubi, B.Mullany, A. L.Cooke: On the measurement of temperature in material removal processes, Annals of the CIRP56 (2007), No. 2, pp. 58160410.1016/j.cirp.2007.10.009Suche in Google Scholar

16 M. H.Attia, A.Cameron, L.Kops: Distortion in thermal field around inserted thermocouples in experimental interfacial studies, Part 4: End effect, Journal of Manufacturing Science and Engineering124 (2002), No. 1, pp. 13514510.1115/1.1419199Suche in Google Scholar

17 A.Woodbury: Effect of deterministic thermocouple errors on the solution of the inverse heat conduction problem, Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK (2001), pp. 18Suche in Google Scholar

18 A. H.Suhail, N.Ismail, S. V.Wong, N. A. AbdulJalil: Optimization of cutting parameters based on surface roughness and assistance of workpiece surface temperature in turning process, American Journal of Engineering and Applied Sciences3 (2010), No. 1, pp. 10210810.3844/ajeassp.2010.102.108Suche in Google Scholar

19 G.Liu, G.Tan, G.Li: Experiment modeling and analysis for temperature field of milling insert, International Journal of Advance Manufacturing Technology40 (2009), No. 1–2, pp. 677310.1007/s00170-007-1322-3Suche in Google Scholar

20 Z. M.Longbottom, Z. D.Lanham: Cutting temperature measurement while machining – A review, Aircraft Engineering and Aerospace Technology77 (2005), No. 2, pp. 12213010.1108/00022660510585956Suche in Google Scholar

21 S.Darwish, R.Davies: Investigation of the heat flow through bonded and brazed metal cutting tools, International Journal of Machine Tools and Manufacturing29 (1989), No. 2, pp. 22923710.1016/0890-6955(89)90034-5Suche in Google Scholar

22 H. T.Young: Cutting temperatures response to flank wear, Wear201 (1996), pp. 11712010.1016/S0043-1648(96)07227-4Suche in Google Scholar

23 Modern Metal Cutting: A Practical Handbook Hardcover, 1st Ed., Sandvik Coromant, Trosa Tryckeri AB, Sweden (1994)Suche in Google Scholar

24 Temperature Measurement, Infrared Thermometers Handbook, http://www.optris.com, accessed on 2013Suche in Google Scholar

25 A.Kus, Y.Isik, M. C.Cakir, S.Coşkun, K.Özdemir: Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting, Sensors15 (2015), No. 1, pp. 1274129110.3390/s150101274Suche in Google Scholar

26 E. O.Ezugwu, J.Bonney, Y.Yamane: An overview of the machinability of aero-engine alloys, Journal of Materials Processing Technology134 (2003), pp. 23325310.1016/S0924-0136(02)01042-7Suche in Google Scholar

27 Product Selection Guide No. 204: Products for machining high temperature alloy materials, The Official Website of the Tungaloy Inc. (2010)Suche in Google Scholar

28 Snappy Materials, Commercial Invoice, 34B Barnes Industrial Road South Wallingford CT 06492 USASuche in Google Scholar

Published Online: 2015-08-31
Published in Print: 2015-09-01

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110778/html?lang=de
Button zum nach oben scrollen