Influence of cutting parameters on the chip-tool interface temperature during the turning of Waspaloy
-
Yahya Isik
, Abdil Kus und M. Cemal Cakir
Abstract
Waspaloy, as a nickel superalloy, is a difficult-to-machine material used for gas turbine engine components that require considerable strength and corrosion resistance at high operating temperatures. The machining of nickel-based alloys generates high temperatures at the cutting tool edge. This research investigated the relationship between cutting parameters and cutting temperature, using a remote temperature measurement method employing an infrared thermometer. In addition, the effects of cutting parameters on surface roughness were examined. Experiments were conducted on Waspaloy AMS5708 superalloy samples and a PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. It was observed that the highest cutting speed and highest feed rate generated higher temperatures and higher surface roughness. Better surface roughness was obtained with the lowest feed rate, the highest cutting speed and the higher cutting depth. No cutting fluid was used in the experiments.
Kurzfassung
Waspaloy als austenitische Nickel-Superlegierung ist ein schwer zu bearbeitender Werkstoff, der für Gasturbinen-Komponenten eingesetzt wird, die eine bemerkenswerte Festigkeit und Korrosionswiderstand bei hohen Einsatztemperaturen benötigen. Die maschinelle Bearbeitung von Nickellegierungen generiert hohe Temperaturen an der Kante des Schneidwerkzeuges. In den diesem Beitrag zugrunde liegenden Forschungsarbeiten wurde das Verhältnis zwischen den Schneidparametern und der Schneidtemperatur untersucht, indem eine Temperaturfernmessung mittels Infrarot-Thermometer zum Einsatz kam. Zusätzlich wurden die Auswirkungen der Schneidparameter auf die Oberflächenrauheit untersucht. Die Experimente wurden mit der Waspaloy AMS5708 Superlegierung durchgeführt und es wurde ein PVD TiAlN-TiN-beschichteter WNVG 080404-IC907 Carbideinsatz beim Drehprozess verwendet. Die höchste Schneidgeschwindigkeit und die höchste Vorschubrate verursachten entsprechend höhere Temperaturen sowie eine höhere Oberflächenrauheit. Die beste Oberflächenrauheit ergab sich bei der niedrigsten Vorschubgeschwindigkeit, der höchsten Schnittgeschwindigkeit und einer großen Schnitttiefe. Es wurden keine Schneidmittel in den Experimenten verwendet.
References
1 T.Kitagawa, A.Kubo, K.Maekawa: Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6AI-6V-2Sn, Wear202 (1997), pp. 142–14810.1016/S0043-1648(96)07255-9Suche in Google Scholar
2 P. C. B.Subhash, C. S. P.Rao: Modelling and prediction of surface roughness, cutting force and temperature while machining Nimonic-75 and Nicrofer C-263 superalloys using artificial neural network, International Journal of Mechanical Engineering and Technology3 (2012), No. 3, pp. 599–613Suche in Google Scholar
3 H.Schultz, T.Moriwaki: High-speed machining, Ann. CIRP41 (1997), pp. 637–643Suche in Google Scholar
4 E. O.Ezugwu: Key improvements in the machining of difficult-to-cut aerospace superalloys, Journal of Machine Tools and Manufacture45 (2005), pp. 1353–136710.1016/j.ijmachtools.2005.02.003Suche in Google Scholar
5 J. T.Horng, N. M.Liu, T.Chiang: Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology, Journal of Materials Processing Technology208 (2008), pp. 532–54110.1016/j.jmatprotec.2008.01.018Suche in Google Scholar
6 D. I.Lalwani, N. K.Mehta, P. K.Jain: Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel, Journal of Materials Processing Technology206 (2008), pp. 167–17910.1016/j.jmatprotec.2007.12.018Suche in Google Scholar
7 F. W.Taylor: On the Art of Cutting Metals, Trans. ASME, New York, USA (1907)10.1038/scientificamerican01121907-25942suppSuche in Google Scholar
8 O.Sullivan, A.Cotterm: Temperature measurement in single point turning, Journal of Material Processing Technology118 (2001), pp. 301–30810.1016/S0924-0136(01)00853-6Suche in Google Scholar
9 D. A.Stephenson: Tool-work thermocouple measurements: Theory and implementation issues, Journal of Engineering for Industry115 (1993), No. 4, pp. 432–43710.1115/1.2901786Suche in Google Scholar
10 K.Yang, Y. C.Liang, K. N.Zheng, Q. S.Bai, W. Q.Chen: Tool edge radius effect on cutting temperature in micro-end-milling process, International Journal of Advance Manufacturing Technology52 (2011), No. 9–12, pp. 905–91210.1007/s00170-010-2795-zSuche in Google Scholar
11 S.Yujing, S.Jie, L.Jiangfen, X.Qingchun: An experimental investigation of the influence of cutting parameters on cutting temperature in milling Ti6AI4 V by applying semi-artificial thermocouple, International Journal of Advance Manufacturing Technology70 (2014), pp. 765–77310.1007/s00170-013-5294-1Suche in Google Scholar
12 G.Barrow: A review of experimental and theoretical techniques for assessing cutting temperatures, Ann. CIRP22 (1973), No. 2, pp. 203–211Suche in Google Scholar
13 A. Y.Herchang, W.Yang: Heat transfer and life of metal cutting tools in turning, International Journal of Heat Mass Transfer41 (1998), No. 3, pp. 613–62310.1016/S0017-9310(97)00105-1Suche in Google Scholar
14 R.Komanduri, Z. B.Hou: A review of the experimental techniques for the measurement of heat and temperature generated in some manufacturing processes and tribology, Tribology International34 (2001), pp. 653–682S0301-679X(01)00068-8Suche in Google Scholar
15 M. A.Davies, T.Ueda, R. M.Saoubi, B.Mullany, A. L.Cooke: On the measurement of temperature in material removal processes, Annals of the CIRP56 (2007), No. 2, pp. 581–60410.1016/j.cirp.2007.10.009Suche in Google Scholar
16 M. H.Attia, A.Cameron, L.Kops: Distortion in thermal field around inserted thermocouples in experimental interfacial studies, Part 4: End effect, Journal of Manufacturing Science and Engineering124 (2002), No. 1, pp. 135–14510.1115/1.1419199Suche in Google Scholar
17 A.Woodbury: Effect of deterministic thermocouple errors on the solution of the inverse heat conduction problem, Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK (2001), pp. 1–8Suche in Google Scholar
18 A. H.Suhail, N.Ismail, S. V.Wong, N. A. AbdulJalil: Optimization of cutting parameters based on surface roughness and assistance of workpiece surface temperature in turning process, American Journal of Engineering and Applied Sciences3 (2010), No. 1, pp. 102–10810.3844/ajeassp.2010.102.108Suche in Google Scholar
19 G.Liu, G.Tan, G.Li: Experiment modeling and analysis for temperature field of milling insert, International Journal of Advance Manufacturing Technology40 (2009), No. 1–2, pp. 67–7310.1007/s00170-007-1322-3Suche in Google Scholar
20 Z. M.Longbottom, Z. D.Lanham: Cutting temperature measurement while machining – A review, Aircraft Engineering and Aerospace Technology77 (2005), No. 2, pp. 122–13010.1108/00022660510585956Suche in Google Scholar
21 S.Darwish, R.Davies: Investigation of the heat flow through bonded and brazed metal cutting tools, International Journal of Machine Tools and Manufacturing29 (1989), No. 2, pp. 229–23710.1016/0890-6955(89)90034-5Suche in Google Scholar
22 H. T.Young: Cutting temperatures response to flank wear, Wear201 (1996), pp. 117–12010.1016/S0043-1648(96)07227-4Suche in Google Scholar
23 Modern Metal Cutting: A Practical Handbook Hardcover, 1st Ed., Sandvik Coromant, Trosa Tryckeri AB, Sweden (1994)Suche in Google Scholar
24 Temperature Measurement, Infrared Thermometers Handbook, http://www.optris.com, accessed on 2013Suche in Google Scholar
25 A.Kus, Y.Isik, M. C.Cakir, S.Coşkun, K.Özdemir: Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting, Sensors15 (2015), No. 1, pp. 1274–129110.3390/s150101274Suche in Google Scholar
26 E. O.Ezugwu, J.Bonney, Y.Yamane: An overview of the machinability of aero-engine alloys, Journal of Materials Processing Technology134 (2003), pp. 233–25310.1016/S0924-0136(02)01042-7Suche in Google Scholar
27 Product Selection Guide No. 204: Products for machining high temperature alloy materials, The Official Website of the Tungaloy Inc. (2010)Suche in Google Scholar
28 Snappy Materials, Commercial Invoice, 34B Barnes Industrial Road South Wallingford CT 06492 USASuche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Adhesive tensile testing of atmospheric plasma sprayed zinc coating on a 1.4301 substrate
- Fatigue strength of nodular cast iron with regard to heavy-wall applications
- Mechanical and corrosion properties of friction stir welded joints of Al-Cu alloy 2219-T87
- The effect of using heat treated ulexite and cashew in automotive friction materials
- Residual stress relaxation in welded large components
- Variation regulation of the acoustic emission energy parameter during the failure process of granite under uniaxial compression
- Iznik tiles: A new production technology and respective characterization
- Quality during milling of a glass fiber reinforced polymer composite
- Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel
- Influence of cutting parameters on the chip-tool interface temperature during the turning of Waspaloy
- Effects of the thixocasting injection velocity on tensile properties of an A357 Al alloy
- Solid mold investment casting – A replication process for open-cell foam metal production
- Design of an impact testing machine for polymer films by the free falling dart procedure
- Mechanical and electrical properties of Sb-Ga50Au10In40 alloys
- CFD simulation of particulate flow in a spiral concentrator
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Adhesive tensile testing of atmospheric plasma sprayed zinc coating on a 1.4301 substrate
- Fatigue strength of nodular cast iron with regard to heavy-wall applications
- Mechanical and corrosion properties of friction stir welded joints of Al-Cu alloy 2219-T87
- The effect of using heat treated ulexite and cashew in automotive friction materials
- Residual stress relaxation in welded large components
- Variation regulation of the acoustic emission energy parameter during the failure process of granite under uniaxial compression
- Iznik tiles: A new production technology and respective characterization
- Quality during milling of a glass fiber reinforced polymer composite
- Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel
- Influence of cutting parameters on the chip-tool interface temperature during the turning of Waspaloy
- Effects of the thixocasting injection velocity on tensile properties of an A357 Al alloy
- Solid mold investment casting – A replication process for open-cell foam metal production
- Design of an impact testing machine for polymer films by the free falling dart procedure
- Mechanical and electrical properties of Sb-Ga50Au10In40 alloys
- CFD simulation of particulate flow in a spiral concentrator