Home Effects of Y2O3 and Al2O3 sintering additives on the hot pressing behavior of AlN ceramics
Article
Licensed
Unlicensed Requires Authentication

Effects of Y2O3 and Al2O3 sintering additives on the hot pressing behavior of AlN ceramics

  • Sungkyu Lee , Hang Chul Jung , Sung-Su Cho and Hyun Seon Hong
Published/Copyright: April 21, 2015
Become an author with De Gruyter Brill

Abstract

AlN plates were fabricated by hot pressing AlN-Y2O3 and AlN-Y2O3-Al2O3 powder mixtures at 1700–1900 °C using yttria and alumina (Al2O3 particle sizes of 3 and 10 μm) powders as sintering additives. The physical and mechanical properties of the hot-pressed AlN ceramics were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The density, thermal conductivity, transverse rupture strength, and grain size were measured. The thermal conductivity of the hot–pressed AlN ceramics ranged between 83–92.7 W × (m × K)−1 and decreased with the addition of Al2O3, whereas the mechanical properties improved with the addition of Al2O3, which is known to have a beneficial effect of grain size refinement. The measured density values of 3.31 to 3.34 g × cm−3 were slightly higher than the theoretical density of 3.26 g × cm−3. This result was attributed to the use of a carbon mold under N2 atmosphere, which effectively removed oxygen atoms from the yttrium-aluminate phase that is expected to form at 1100 °C.

Kurzfassung

Für den vorliegenden Beitrag wurden AlN-Platten durch Heißpressen von AlN-Y2O3- und AlN-Y2O3-Al2O3-Pulvergemischen zwischen 1700–1900 °C hergestellt, wobei Yttrium- und Aluminiumoxide (Al2O3 mit einer Partikelgröße von 3 und 10 μm) als Zusätze verwendet wurden. Die physikalischen und mechanischen Eigenschaften der warmgepressten AlN-Keramiken wurden mittels Röntgendiffraktometrie (XRD), Rasterelektronenmikroskopie (REM) und energiedispersiver Röntgenspektroskopie (EDS) charakterisiert. Die Dichte, die thermische Leitfähigkeit, die Querzugfestigkeit und die Korngröße wurden gemessen. Die thermische Leitfähigkeit der heißgepressten AlN-Keramiken betrug zwischen 83 und 92.7 W × (m × K)−1 und nahm mit dem Zusatz von Al2O3 ab, wobei die mechanischen Eigenschaften sich mit der Zugabe von Al2O3 verbesserten, was sich bekanntermaßen auf den vorteilhaften Effekt auf die Kornfeinung zurückführen lässt. Die gemessenen Werte der Dichte zwischen 3.31 und 3.34 g × cm−3 waren leicht höher als die theoretische Dichte von 3.26 g × cm−3. Dieses Ergebnis ließ sich auf die Verwendung einer Carbonform unter N2-Atmosphäre zurückführen, wodurch die Sauerstoffatome effektiv aus der Yttrium-Aluminat-Phase entfernt werden konnten, von der erwartet wird, dass sie sich bei 1100 °C bildet.


§Correspondence Address, Dr. Sungkyu Lee, Principal Engineer, Plant Engineering Center, Institute for Advanced Engineering (IAE), 633-2 Goan-ri, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-863, Korea, E-mail:

Sungkyu Lee, born 1959, received his BS from the Hanyang University of Seoul, Korea, in 1982. He graduated with a MS and PhD in Materials Science and Engineering from the University of Minnesota in Twin Cities, USA, in 1991 and 1994, respectively. He is currently working as Principal Engineer at the Plant Engineering Center, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea.

Hang-Chul Jung, born 1977, received his BS and MS in Metallurgical Materials Engineering from the Chosun University, Gwangju, Korea, in 2002 and 2004, respectively. He completed the PhD course in Materials Science and Engineering at Ajou University, Suwon, Korea in 2012, fulfilling all academic requirements to finish his PhD thesis. He is currently working as Senior Researcher at the Advanced Materials and Processing Center, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea.

Sung-Su Cho, born 1973, received his B. S. at Kyonggi University, Suwon, Korea, in 2005. He graduated as M. S. in Energy Systems Research at the Ajou University, Suwon, Korea, in 2007. Now he is working as a Principal Engineer and team leader at the Advanced Materials & Processing Center, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea. Besides, he is currently under Ph.D. program at the Energy System Division, Ajou University, Suwon-si, Korea.

Hyun Seon Hong, born 1968, received his BS, MS and PhD in Materials Engineering from the Hanyang University, Seoul, Korea, in 1991, 1994 and 1998, respectively. He is currently Professor at the Sungshin Women's University, Department of Interdisciplinary ECO Science, Seoul, 142-732, Korea.


References

1 C. Y.HsiehC. N.LinS. L.ChungJ.ChengD. K.Agrawal: Microwave sintering of AlN powder synthesized by a SHS method, Journal of the European Ceramic Society27 (2007), pp. 34335010.1016/j.jeurceramsoc.2006.03.003Search in Google Scholar

2 X.XuH.ZhuangW.LiS.XuB.ZhangX.Fu: Improving thermal conductivity of Sm2O3-doped AlN ceramics by changing sintering conditions, Materials Science and Engineering A342 (2003), pp. 10410810.1016/S0921-5093(02)00254-XSearch in Google Scholar

3 K. A.KhorK. H.ChengL. G.YuF.Boey: Thermal conductivity and dielectric constant of spark plasma sintered aluminum nitride, Materials Science and Engineering A347 (2003), pp. 30030510.1016/S0921-5093(02)00601-9Search in Google Scholar

4 G. A.SlackL. J.SchowalterD.MorelliJ. A.FreitasJr.: Some effects of oxygen impurities on AlN and GaN, Journal of Crystal Growth246 (2002), pp. 28729810.1016/S0022-0248(02)01753-0Search in Google Scholar

5 L.QiaoH.ZhouH.XueS.Wang: Effects of Y2O3 on low temperature sintering and thermal conductivity of AlN ceramics, Journal of the European Ceramic Society23 (2003), pp. 616710.1016/S0955-2219(02)00079-1Search in Google Scholar

6 S.DuZ.LiuL.LiZ.Gui: Characterization of the microstructure of sintered AlN by SEM and TEM, Materials Letters25 (1995), pp. 10510910.1016/0167-577X(95)00166-2Search in Google Scholar

7 S.KumeM.YasuokaS.-K.LeeA.KanH.OgawaK.Watari: Dielectric and thermal properties of AlN ceramics, Journal of the European Ceramic Society27 (2007), pp. 2967297110.1016/j.jeurceramsoc.2006.11.023Search in Google Scholar

8 F.BoeyA. I. Y.TokY. C.LamS. Y.Chew: On the effects of secondary phase on thermal conductivity of AlN ceramic substrates using a microstructural modeling approach, Materials Science and Engineering A335 (2002), pp. 28128910.1016/S0921-5093(01)01936-0Search in Google Scholar

9 A.KlimeraF.RaetherJ.Ruska: Improving strength by controlling segregation in liquid phase sintered aluminum nitride ceramics, Journal of the European Ceramic Society27 (2007), pp. 1419142410.1016/j.jeurceramsoc.2006.04.098Search in Google Scholar

10 Y. W.KimH. C.ParkY. B.LeeK. D.OhR.Stevens: Reaction sintering and microstructural development in the system Al2O3-AlN, Journal of the European Ceramic Society21 (2001), pp. 2383239110.1016/S0955-2219(01)00200-XSearch in Google Scholar

11 F.BoeyL.CaoK. A.KhorA.Tok: Phase reaction and sintering behavior of a Al2O3-20wt.-%AlN-5wt.-%Y2O3 system, Acta Materialia49 (2001), pp. 3117312710.1016/S1359-6454(00)00391-8Search in Google Scholar

12 J. S.Reed: Principles of Ceramic Processing, 2nd Edition, John Wiley & Sons, Inc., New York, USA (1995)Search in Google Scholar

13 H.NakanoK.WatariK.Urabe: Grain boundary phase in AlN ceramics fired under reducing N2 atmosphere with carbon, Journal of the European Ceramic Society23 (2003), pp. 1761176810.1016/S0955-2219(02)00408-9Search in Google Scholar

14 L.QiaoH.ZhouK.ChenR.Fu: Effects of Li2O on the low temperature sintering and thermal conductivity of AlN ceramics, Journal of the European Ceramic Society23 (2003), pp. 1517152410.1016/S0955-2219(02)00344-8Search in Google Scholar

Published Online: 2015-04-21
Published in Print: 2015-04-30

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Effects of the thickness on the microstructure and corrosion behavior of a TiAlN film on 4140 steel
  5. The effect of anodizing conditions on the corrosion resistance of Ti6Al4V titanium alloy
  6. Frequency analysis of volumetric porosity in aluminum castings at high and low cooling rates
  7. Corrosion resistance of nanosilicasilicate conversion coatings on aluminum prepared by the dip immersion method
  8. Corrosion behavior of Haynes® 556® Fe-Ni-Cr-Co alloy for integrated coal gasification combined cycle syngas plants: A plant exposure study*
  9. Effects of Y2O3 and Al2O3 sintering additives on the hot pressing behavior of AlN ceramics
  10. Einfluss der Klebschichtdicke auf Kopplungsfaktor und Lebensdauer beim Bekleben von piezoelektrischen Flächenwandlern mit Epoxykleber
  11. Influence of the heat treatment on hardness and adhesive wear performance of Ni-P deposit with low phosphorus content
  12. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel
  13. Diffusion characteristics of plasma nitrided hard chromium on AISI 1010 steel
  14. Estimation of the mechanical properties of nanocomposites based on the properties prediction of single wall carbon nanotubes (SWCNT)
  15. Investigation of joints between polypropylene and polybutylene terephthalate
  16. Parametric optimization of seam welding of stainless steel (SS 304) sheets
  17. Effect of the powder particle size on the wear behavior of boronized AISI 304 stainless steel
  18. Optimum buckling design of axially layered graded uniform columns
  19. Kalender/Calendar
  20. Kalender
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110731/html
Scroll to top button