Home Effect of cryogenic treatment on the microstructure and wear behavior of a T-42 tool steel
Article
Licensed
Unlicensed Requires Authentication

Effect of cryogenic treatment on the microstructure and wear behavior of a T-42 tool steel

  • Lakhwinder Pal Singh and Jagtar Singh
Published/Copyright: March 27, 2015
Become an author with De Gruyter Brill

Abstract

The cryogenic treatment process is carried out at sub-zero temperatures down to −184 °C to modify the microstructure and properties of the material. This process is an extension of heat treatment which further improves the properties of the material. This publication focuses on the effect of cryogenic treatment on high speed steel (HSS) T-42 tool material. In this research, cryogenic treatment at −184 °C is conducted and the properties of the material compared with them of untreated material. As the temperature is decreased, microstructure of material is refined and a higher number of carbide precipitates appeared on the surface after the treatment. The microstructural changes result in improvement of properties of HSS, (T-42) tool material. Pin-on-disc wear test is conducted on untreated (UT) HSS and cryogenic treated (CT) HSS specimens. It is observed that the average wear rate of UT-HSS and CT-HSS samples is 6.8 × 10−8 mm3/Nm and 4.1 × 10−8 mm3/Nm, respectively. The average wear rate has been improved by 39.71 % for CT-HSS compared to UT-HSS tool material.

Kurzfassung

Die kryogene Behandlung in der diesem Beitrag zugrunde liegenden Studie wurde bei Temperaturen unter 0 °C bis zu −184 °C ausgeführt, um die Mikrosturktur und die Eigenschaften des Werkstoffes zu modifizieren. Dieser Prozess stellt eine Erweiterung der Wärmebehandlung dar und verbessert weiterhin die Eigenschaften des Werkstoffes. Dieser Beitrag ist auf die kryogene Behandlung des Schnellarbeitsstahles T-42 fokussiert. Dabei wurden die Eigenschaften mit und ohne kryogener Behandlung verglichen. Wenn die Temperatur erniedrigt wird, wird die Mikrostrutur des Werkstoffes verfeinert und es zeigt sich eine größere Anzahl von ausgeschiedenen Carbiden nach einer solchen Behandlung. Diese mikrostrukturellen Veränderungen resultieren in einer Verbesserung der Eigenschaften des HSS T-42 Werkzeugmaterials. Es wurde der Stift-Scheibe-Versuch mit den unbehandelten (un-treated – UT) und dem kryogen (cryogenic treated – CT) behandelten HSS-Stahlproben angewendet. Dabei wurde beobachtet, dass die durchschnittliche Verschleißrate der UT-HSS- und der CT-HSS-Proben 6.8 × 10−8 mm3 × Nm−1 bzw. 4.1 × 10−8 mm3 × Nm−1 betrug. Die durchschnittliche Verschleißrate verbesserte sich um 39.71 % für das CT HSS gegenüber dem UT HSS Werkzeugmaterial.


§Correspondence Address, Lakhwinder Pal Singh, Research Scholar, Department of Mechanical Engineering, Sant Longowal Institute of Engineering and Technology (Established by Govt. of India), Longowal, Sangur 148106, Punjab, India., E-mail: ,

Dr. Lakhwinder Pal Singh, born in 1972, is presently a research scholar in the Department of Mechanical Engineering at Sant Longowal Institute of Engineering and Technology, established by government of India (deemed university), Longowal, Sangrur, Punjab, India. He has 20 years of teaching, research and industrial experience and currently he is working as Principal cum Professor in the Department of Mechanical Engineering at L. R. Institute of Engineering and Technology, Solan, H. P. (India). He received his BE (Mechanical) from Amravati University (Maharastra State, India) in 1993 and his ME in Industrial Engineering from Guru Nanak Dev Engineering College, Ludhiana, Punjab, India under Punjab Technical University, Jalandhar, India in 2007. His research interests are industrial engineering, manufacturing and production engineering.

Dr. Jagtar Singh, born in 1969, is a member of the faculty of the Department of Mechanical Engineering at Sant Longowal Institute of Engineering & Technology, Longowal. Sanrur, Punjab, India. He has around 19 years of professional experience in teaching, industry and research. He received his master degree in Industrial Engineering from Thapar University in Patiala, Punjab, India, in 1997 and obtained his Doctoral degree from NIT Kurukshetra, Haryana, India, in 2007. He has published more than 40 papers in international journals and proceedings of international and national conferences. He has organized many conferences and short term courses in the area of industrial and production engineering.


References

1 D.Das, A. K.Dutta, K. K.Ray: Influence of temperature of sub-zero treatments on the wear behavior of die steel, Wear267 (2009), No. 9, pp. 1361137010.1016/j.wear.2008.11.029Search in Google Scholar

2 M.Koneshlou, K.MeshinchiAsl, F.Khomamizadeh: Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel, Cryogenics51 (2011), No. 1, pp. 556110.1016/j.cryogenics.2010.11.001Search in Google Scholar

3 R.Mohandoss: Mechanical behaviour of cryogenically treated EN-19 alloy steel, International Journal of Power Control Signal and Computation (IJPCSC)1 (2010), pp. 4951Search in Google Scholar

4 S.Sendooran, P.Raja: Metallurgical investigation on cryogenic treated HSS tool, International Journal of Engineering Science and Technology (IJEST)5 (2011), pp. 39923996Search in Google Scholar

5 J. Y.Huang, Y. T.Zhu, X. Z.Liao, I. J.Beyerlein, M. A.Bourke, T. E.Mitchell: Microstructure of cryogenic treated M2 tool steel, Materials and Science Engineering339 (2003), pp. 24124410.1016/S0921-5093(02)00165-XSearch in Google Scholar

6 J.Singh, L. P.Singh, A.Kaushik: Enhancing wear resistance of En45 spring steel using cryogenic treatment, Friction and Wear Research (FWR) Journal1 (2013), No. 2, pp. 2429Search in Google Scholar

7 Richard N.Wurzbach, William De Felice: Improving Component Wear Performance through Cryogenic Treatment, Brogue, Pennsylvania, USA (2004)Search in Google Scholar

8 L. P.Singh, J.Singh: Optimization of cutting parameters using cryogenically treated high speed steel tool by Taguchi application, International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME)3 (2013), No. 3, pp. 263810.4018/ijmmme.2013010102Search in Google Scholar

9 L. P.Singh, J.Singh: Effects of cryogenic treatment on high speed steel tools, Journal of Engineering and Technology (JET)1 (2011), No. 2, pp. 889310.4103/0976-8580.86640Search in Google Scholar

10 www.astm.org/Standards/G99.htmSearch in Google Scholar

Published Online: 2015-03-27
Published in Print: 2015-04-01

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Influence of the production process on the deformation and fatigue performance of friction drilled internal threads in the aluminum alloy 6060*
  5. Effect of quench and strain aging on the mechanical properties of low carbon microalloyed steels
  6. Effect of temperature on microstructure and mechanical behavior of diffusion bonded Armor 500 and AISI 1040 steels
  7. Analysis of industrial conditions during multi-stage cooling of C70D high-carbon steel wire rod
  8. Effect of cryogenic treatment on the microstructure and wear behavior of a T-42 tool steel
  9. Application of the response surface methodology in the ball burnishing process for the prediction and analysis of surface hardness of the aluminum alloy AA 7075
  10. The memory effect in polyolefinic products: A tool for confirming the steam sterilization process
  11. Neutron tomography in archaeology*
  12. Ultraschallprüfung von Betonbauteilen – laufzeitgesteuerte Gruppenstrahler mit Punktkontaktprüfköpfen
  13. Acoustic emission testing of surface roughness and wear caused by grinding of ceramic materials
  14. Electrochemical impedance spectroscopy of hardened compacted cemented soils at early curing stage
  15. Microstructure and pore fractal dimensions of recycled thermal insulation concrete
  16. Microstructure and tribological properties of electrolytic plasma nitrided high-speed steel
  17. Exploitation of limestone in brick making
  18. Effect of alkaline treatment on physico-mechanical properties of black rice husk ash filled polypropylene biocomposites
  19. Kalender/Calendar
  20. Kalender
Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110720/html?lang=en
Scroll to top button