Home Technology Electrochemical impedance spectroscopy of hardened compacted cemented soils at early curing stage
Article
Licensed
Unlicensed Requires Authentication

Electrochemical impedance spectroscopy of hardened compacted cemented soils at early curing stage

  • Pengju Han , Y. Frank Chen , Chao Ren and Xiaohong Bai
Published/Copyright: March 27, 2015
Become an author with De Gruyter Brill

Abstract

Based on the theory of electrochemical impedance spectroscopy (EIS) and the properties of compacted cemented soils (CS) at different early curing time, an equivalent circuit model was developed to study the physical meanings of EIS parameters. EIS was also used to investigate the properties and hardened mechanisms of CS at different curing time. The relationships among the unconfined compressive strengths (UCS) of CS and EIS parameters are discussed. In addition, a useful multi-linear regression equation for UCS is proposed. The proposed model and EIS parameters help to understand the processing of cement hardened soils and the properties of CS. The study results offer more reasonable explanations for the EIS spectra.

Kurzfassung

Basierend auf der Theorie der elektrochemischen Impedanzspektroskopie (EIS) und den Eigenschaften von kompaktierten zementierten Böden (Cemented Soil – CS) bei verschiedenen frühen Behandlungszeiten wurde ein äquivalentes Kreismodel entwickelt, um die physikalische Bedeutung der EIS-Parameter zu untersuchen. EIS wurde außerdem angewendet, um die Eigenschaften und die Aushärtemechanismen von CS bei verschiedenen Behandlungszeiten zu untersuchen. Die Zusammenhänge zwischen den unbeschränkten Druckfestigkeiten (Unconfined Compressive Strength – UCS) und der EIS-Parameter werden im vorliegenden Beitrag diskutiert. Zusätzlich wird eine nützliche multilineare Regressionsgleichung für die UCS aufgestellt. Das propagierte Modell und die EIS-Parameter tragen dazu bei, die Verarbeitung von zementgehärteten Böden und deren Eigenschaften zu verstehen. Zudem liefern die Ergebnisse der Studie aussagekräftige Erklärungen für die EIS-Spektren.


§Correspondence Address, Prof. Dr. Y. Frank Chen, Department of Civil Engineering, The Pennsylvania State University, 777 W Harrisburg Pike, Middletown, PA 17057-4898, USA, E-mail:

Pengju Han, born in 1981, is Associate Professor at Taiyuan University of Technology, China. He obtained his doctorate degree in Geotechnical Engineering from the same university in 2009. He has been a visiting scholar at the Pennsylvania State of University in Middletown, USA. His study focuses on the corrosive and mechanical properties of civil materials.

Y. Frank Chen, born in 1956, is currently Tenured Professor at the Pennsylvania State University, Middletown, USA and Distinguished Professor of Taiyuan University of Technology, China. He obtained his PhD degree from the University of Minnesota, USA, in 1988. He is specialized in dynamic soil-structure interaction, computational methods, limit states design and mitigation for civil infrastructures.

Chao Ren, born in 1990, is a graduate student of Taiyuan University of Technology, China. He obtained his bachelor's degree in Civil Engineering from Changsha University of Technology, China, in 2013. His primary research area is geotechnical engineering.

Xiaohong Bai, born in 1959, is Professor at Taiyuan University of Technology, China. She obtained her PhD degree in civil engineering from The Glasgow University, UK, in 1992. Her primary research area is geotechnical engineering, particularly the characteristics of loess.


References

1 T.Islam, M. M.Mustafa, H.Sanusi: Modeling of electrical resistivity and maximum dry density in soil compaction measurement, Environ. Earth Sci.67 (2012), pp. 1299130510.1007/s12665-012-1573-7Search in Google Scholar

2 H. F.Xing, X. M.Yang, C.XU, G. B.Ye: Strength characteristics and mechanisms of salt-rich soil cement, Engin. Geol.103 (2009), pp. 333810.1016/j.enggeo.2008.07.011Search in Google Scholar

3 L. S.Bryson, A.Bathe: Determination of selected geotechnical properties of soil using electrical conductivity testing, J. Geotech. Testing32 (2009), pp. 25226110.1520/GTJ101632Search in Google Scholar

4 L. H.Han, S. Y.Liu, Y. J.Du: New method for testing contaminated soil – Electrical resistivity method, Chin. J. Geotech. Eng.28 (2006), pp. 10281032 (in Chinese) 10.3321/j.issn:1000-4548.2006.08.019Search in Google Scholar

5 P.Gu, P.Xie, J. J.Beaudoin: Microstructural characterization of the transition zone in cement systems by means of AC impedance spectroscopy, Cement Concrete Res.23 (1993), pp. 58159110.1016/0008-8846(93)90008-WSearch in Google Scholar

6 P.Gu, Z. Z.Xu, P.Xie, J. J.Beaudoin: Application of AC impedance techniques in studies of porous cementitious materials (I): Influence of solid phase and pore solution on high frequency resistance, Cement Concrete Res.23 (1993), pp. 53154010.1016/0008-8846(93)90003-RSearch in Google Scholar

7 J. M.Cruz, I. C.Fita, L.SorianoJ.Payá, M. V.Borrachero: The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans, Cement Concrete Res.50 (2013), pp. 516110.1016/j.cemconres.2013.03.019Search in Google Scholar

8 C. N.Cao, J. Q.Zhang: An Introduction to Electrochemical Impedance Spectroscopy, Science Press, Beijing, P. R. China (2002) (in Chinese)Search in Google Scholar

9 M. L.Shi: AC Impedance Spectroscopy Principles and Application, National Defend Industry Press, Beijing, P. R. China (2001) (in Chinese)Search in Google Scholar

10 X. L.Cui, Z. Y.Jiang: The plot formats and applications of electrochemical impedance spectroscopy, Chin. J. Shanghai Teachers Univ. (Natural Sci.)30 (2001), pp. 5361 (in Chinese) 10.3969/j.issn.1000-5137.2001.04.010Search in Google Scholar

11 Z. H.Yang, Y. L.Yin, M. L.Shi: Study of AC impedance spectroscopy for alkali-silica reaction and its rational application, Chin. J. Building Mater.10 (2007), pp. 4854 (in Chinese) 10.3969/j.issn.1007-9629.2007.01.009Search in Google Scholar

12 G. L.Song: Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete, Cement Concrete Res.30 (2000), pp. 1723173010.1016/S0008-8846(00)00400-2Search in Google Scholar

13 M.Keddam, H.Takenouti, X. R.Nóvoa, C.Andrade, C.Alonso: Impedance measurements on cement paste, Cement Concrete Res.27 (1997), pp. 1191120110.1016/S0008-8846(97)00117-8Search in Google Scholar

14 X. Q.Dong, G. H.Yang: The AC impedance characteristics of cemented soil at early stage, Journal of Taiyuan Univ. Tech.43 (2012), pp. 6062 (in Chinese) 10.3969/j.issn.1007-9432.2012.01.015Search in Google Scholar

15 X. H.Bai, Y. Q.Zhao, P. J.Han, J. Y.Qiao: Experimental study on mechanical property of cemented soil under environmental contaminations, Chin. J. Geotech. Eng.29 (2007), pp. 12601263 (in Chinese) 10.3321/j.issn:1000-4548.2007.08.024Search in Google Scholar

16 Chinese Standard for Soil Test Methods (GB T 50123-1999), Chinese Architecture and Building Press, Beijing, P. R. China (2011) (in Chinese).Search in Google Scholar

17 M.Cabeza, M.Keddam, M.Nóvoa: Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste, Electrochim. Acta51 (2006), pp. 1831184110.1016/j.electacta.2005.02.125Search in Google Scholar

18 Z. X.Xu: Development in electrochemistry of cement and concrete science AC impedance spectroscopy theory, Chin. J. Ceram. Soc., 22 (1994), pp. 173180 (in Chinese) 10.3321/j.issn:0454-5648.1994.02.003Search in Google Scholar

19 R. H.Zuo: New methods of structure and properties of cement concrete – AC impedance spectroscopy, Sci. and Tech. Overseas Building Mat.26 (2005), pp. 1921, 24 10.3963/j.issn.1674-6066.2005.01.008Search in Google Scholar

Published Online: 2015-03-27
Published in Print: 2015-04-01

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Influence of the production process on the deformation and fatigue performance of friction drilled internal threads in the aluminum alloy 6060*
  5. Effect of quench and strain aging on the mechanical properties of low carbon microalloyed steels
  6. Effect of temperature on microstructure and mechanical behavior of diffusion bonded Armor 500 and AISI 1040 steels
  7. Analysis of industrial conditions during multi-stage cooling of C70D high-carbon steel wire rod
  8. Effect of cryogenic treatment on the microstructure and wear behavior of a T-42 tool steel
  9. Application of the response surface methodology in the ball burnishing process for the prediction and analysis of surface hardness of the aluminum alloy AA 7075
  10. The memory effect in polyolefinic products: A tool for confirming the steam sterilization process
  11. Neutron tomography in archaeology*
  12. Ultraschallprüfung von Betonbauteilen – laufzeitgesteuerte Gruppenstrahler mit Punktkontaktprüfköpfen
  13. Acoustic emission testing of surface roughness and wear caused by grinding of ceramic materials
  14. Electrochemical impedance spectroscopy of hardened compacted cemented soils at early curing stage
  15. Microstructure and pore fractal dimensions of recycled thermal insulation concrete
  16. Microstructure and tribological properties of electrolytic plasma nitrided high-speed steel
  17. Exploitation of limestone in brick making
  18. Effect of alkaline treatment on physico-mechanical properties of black rice husk ash filled polypropylene biocomposites
  19. Kalender/Calendar
  20. Kalender
Downloaded on 20.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110710/html
Scroll to top button