Testing low-cycle material properties with micro-specimens*
-
Dariusz Boroński
Abstract
New possibilities of low cycle fatigue material properties testing with the use of micro-specimens are presented in this publication. The discussed solution is of great significance for analysis of local properties of a material, e. g. in welded structures. Properties of a material determined in the manner presented in this publication find application both in fatigue life assessment (fatigue life curves) and in material modeling (cyclic stress-strain curves), e. g. in numerical analysis of local strain and stress that occur in structural components.
Kurzfassung
In diesem Beitrag werden neue Möglichkeiten für die Prüfung der LCF-Eigenschaften mit Mikroproben vorgestellt. Die diskutierte Lösung hat große Signifikanz für die Analyse der lokalen Eigenschaften eines Materials, insbesondere in geschweißten Strukturen. Die Eigenschaften, die auf die in diesem Artikel vorgestellten Weise bestimmt wurden, finden sowohl in der Lebensdauerabschätzung (Lebensdauerkurven) als auch in der Materialmodellierung (zyklische Spannungs-Dehnungs-Kurven) Anwendung, insbesondere in der numerischen Analyse von lokalen Dehnungen und Spannungen, die in Strukturbauteilen auftreten.
References
1 R. C.Rice (Ed.): Fatigue Design Handbook, 3rd Edition, Society of Automotive Engineering, USA (1997)Suche in Google Scholar
2 P. M.Koçak, S.Webster, J. J.Janosch, R. A.Ainsworth, R.Koers: FITNET Fitness-for-Service Procedure – Final Draft MK7 (2006)Suche in Google Scholar
3 J.Schijve: Fatigue of Structures and Materials, Springer, Berlin (2009)10.1007/978-1-4020-6808-9Suche in Google Scholar
4 Proc. Of the 17th International Ship and Offshore Structures Congress 16–21 August 2009 Seoul, Korea Volume 1, Committee III. 2 Fatigue And FractureSuche in Google Scholar
5 P. P.Milella: Fatigue and Corrosion in Metals, Springer, Berlin (2013)10.1007/978-88-470-2336-9Suche in Google Scholar
6 T.Hirose, H.Sakasegawa, A.Kohyama, Y.Katoh, H.Tanigawa: Efect of specimen size on fatigue properties of reduced activation ferritic/martensitic steels, Journal of Nuclear Materials283–287 (2000), pp. 1018–1022Suche in Google Scholar
7 C. E.Jaske, S. C.Deevi, S. S.Shademan: Fatigue and cyclic deformation behaviour of iron aluminide, Materials Science and EngineeringA258 (1998), pp. 211–218Suche in Google Scholar
8 W. N.Sharpe, B.Yuan: New applications of the interferometric strain/displacement gage, G. F.Lucas, P. C.McKeighan, J. S.Ransom (Eds.): Nontraditional Methods of Sensing Stress, Strain, and Damage in Materials and Structures, ASTM International (2001)Suche in Google Scholar
9 S. M.Allameh, J.Lou, F.Kavishe, T.Buchheit, W. O.Soboyejo: An investigation of fatigue in LIGA Ni MEMS thin films, Materials Science and Engineering A371 (2004), pp. 256–26610.1016/j.msea.2003.12.020Suche in Google Scholar
10 C. J.Szczepanski, S. K.Jha, P. A.Shade, R.Wheeler, J. M.Larsen: Demonstration of an in situ microscale fatigue testing technique on a titanium alloy, International Journal of Fatigue57 (2013), pp. 131–13910.1016/j.ijfatigue.2012.08.008Suche in Google Scholar
11 S.Saito, K.Kikuchi, Y.Onishi, T.Nishino: Development of piezoelectric ceramics driven fatigue, Journal of Nuclear Materials307- 311 (2002), pp. 1609–1612Suche in Google Scholar
12 D.Boroński, P.Kiedrowski: Investigations of an influence of a fiber-optics welding on their mechanical strength, Proc. of the XXIV Sympozjum Zmęczenie i Mechanika Pękania, Bydgoszcz-Pieczyska (2012) (in Polish)Suche in Google Scholar
13 H. S.Cho, K. J.Hemker, K.Lian, J.Goettert, G.Dirras: Measured mechanical properties of LIGA Ni structures, Sensors and Actuators A103 (2003), pp. 59–63Suche in Google Scholar
14 N. N.Nemeth, L. J.Evans, O. M.Jadaan, W. N.Sharpe, G. M.Beheim, M. A.Trapp: Fabrication and probabilistic fracture strength prediction of high-aspect-ratio single crystal silicon carbide micro-specimens with stress concentration, Thin Solid Films515 (2007), pp. 3283–329010.1016/j.tsf.2006.01.041Suche in Google Scholar
15 D.Radaj: Review of fatigue strength assessment of nonwelded and welded structures based on local parameters, International Journal of Fatigue18 (1996), pp. 153–17010.1016/0142-1123(95)00117-4Suche in Google Scholar
16 N. E.Dowling, W. R.Brose, W. K.Wilson: A discussion of local strain approach to notched member fatigue life prediction, Westinghouse Scientific Paper 76-1E7-PALFA-P1 (1976)Suche in Google Scholar
17 L. E.Tucker, R. W.Landgraf, W. R.Brose: SAE Report 740279, Automotive Engineering Congress (1974)Suche in Google Scholar
18 H.Neuber: Kerbspannungslehre, Springer, Berlin (1958)10.1007/978-3-642-53069-2Suche in Google Scholar
19 H.Neuber: Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law, ASME Journal of Applied Mechanics28 (1961), pp. 544–55010.1115/1.3641780Suche in Google Scholar
20 K.Molski, G.Glinka: A method of elastic- plastic stress and strain calculation at a notch root, Materials Science and Engineering50 (1981), pp. 93–100Suche in Google Scholar
21 G.Glinka: Energy density approach to calculation of inelastic strain-stress near notched and cracks. Engineering Fracture Mechanics22 (1985), pp. 485–50810.1016/0013-7944(85)90148-1Suche in Google Scholar
22 D.Boroński: Cyclic material properties distribution in laser welded joints, International Journal of Fatigue28 (2006), No. 4, pp. 346–35410.1016/j.ijfatigue.2005.07.029Suche in Google Scholar
23 D.Boroński: Material properties investigations with the use of micro-specimen, Material Science Forum726 (2012), pp. 51–5410.4028/www.scientific.net/MSF.726.51Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Vorwort/Editorial
- Vorwort
- Fachbeiträge/Technical Contributions
- Fatigue assessment of full-scale welded crane runway girders*
- Cyclic plastic response of nickel-based superalloy at room and at elevated temperatures*
- Fatigue behavior of calcium containing AZ91 magnesium alloys*
- Influences on the thermomechanical fatigue crack growth of the nickel alloy 617*
- Influence of laser cutting on the fatigue limit of two high strength steels*
- Fatigue life and cyclic material behavior of butt-welded high-strength steels in the LCF regime*
- Ratcheting behavior of bearing support structures during windmilling in aero engines*
- Transient micromechanical deformation and thermomechanical fatigue damage in AlSi based piston alloys under superimposed high cycle mechanical and low cycle thermal loading*
- Life time assessment of an aluminum alloy under complex low cycle fatigue loading*
- Testing low-cycle material properties with micro-specimens*
- Estimation of local cyclic plasticity based on a coupled EBSD and TEM analysis*
- Kalender/Calendar
- Kalender
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Vorwort/Editorial
- Vorwort
- Fachbeiträge/Technical Contributions
- Fatigue assessment of full-scale welded crane runway girders*
- Cyclic plastic response of nickel-based superalloy at room and at elevated temperatures*
- Fatigue behavior of calcium containing AZ91 magnesium alloys*
- Influences on the thermomechanical fatigue crack growth of the nickel alloy 617*
- Influence of laser cutting on the fatigue limit of two high strength steels*
- Fatigue life and cyclic material behavior of butt-welded high-strength steels in the LCF regime*
- Ratcheting behavior of bearing support structures during windmilling in aero engines*
- Transient micromechanical deformation and thermomechanical fatigue damage in AlSi based piston alloys under superimposed high cycle mechanical and low cycle thermal loading*
- Life time assessment of an aluminum alloy under complex low cycle fatigue loading*
- Testing low-cycle material properties with micro-specimens*
- Estimation of local cyclic plasticity based on a coupled EBSD and TEM analysis*
- Kalender/Calendar
- Kalender