Life time assessment of an aluminum alloy under complex low cycle fatigue loading*
-
Karolina Walat
, Tadeusz Łagoda und Marta Kurek
Abstract
This publication presents an expression for the equivalent strain based on fatigue tests under complex strain state. The respective aluminum alloy was tested under a very low number of cycles. The criterion uses the critical plane determined according to the material kind function. The determined equivalent amplitude for complex proportional and non-proportional loading states is included into the scatter band of the same coefficient for simple loading states. The model based on the proposal by Carpinteri for determination of the critical plane position under a complex strain state can be a useful tool for fatigue life assessment in the case of a very low number of cycles. The expression for the equivalent strain includes both the normal and shear strain histories on the critical plane with suitable weight functions. The determined equivalent amplitude for complex proportional and non-proportional loading states is also included into the scatter band of the same coefficient for simple loading states.
Kurzfassung
Der vorliegende Beitrag präsentiert einen mathematischen Ausdruck für die Äquivalenzdehnung basierend auf Ermüdungsversuchen unter komplexen Dehnungszuständen. Die entsprechende Aluminiumlegierung wurde bei einer sehr geringen Anzahl von Lastwechseln geprüft. Das Kriterium verwendet die kritische Ebene, die anhand der Materialtypfunktion bestimmt wird. Die so bestimmte Äquivalenzamplitude für die komplexen proportionalen und nicht-proportionalen Beanspruchungszustände wurde in einem Streuband für denselben Koeffizienten bei einfachen Beanspruchungszuständen berücksichtigt. Das auf dem Ansatz von Carpinteri zur Bestimmung der Position der kritischen Ebene unter einem komplexen Dehnungszustand basierende Modell kann ein nützliches Werkzeug für die Abschätzung der Ermüdungslebensdauer im Falle sehr niedriger Lastwechselzahlen sein. Der Ausdruck für die Äquivalenzdehnung beinhaltet beides, die Normal- und die Scherdehnungshistorien auf die kritische Ebene mit geeigneten Gewichtungsfunktionen. Die bestimmte Äquivalenzamplitude für die komplexen proportionalen und die nicht-proportionalen Beanspruchungszustände ist ebenfalls in dem Streuband für dieselben Koeffizienten bei einfachen Beanspruchungszuständen eingeschlossen.
References
1 A.Carpinteri, E.Macha, R.Brighenti, A.Spagnoli: Expected principal stress directions under multi-axial random loading, Part I: Theoretical aspects of the weight function method, International Journal of Fatigue21 (1999), pp. 83–88Suche in Google Scholar
2 A.Carpinteri, A.Spagnoli: Multi-axial high cycle fatigue criterion for hard metals, International Journal of Fatigue23 (2001), pp. 135–145Suche in Google Scholar
3 A.Carpinteri, A.Spagnoli, S.Vantadoris: Multi-axial fatigue life estimation in welded joints using the critical plane approach, International Journal of Fatigue31 (2009), pp. 188–196Suche in Google Scholar
4 A.Carpinteri, A.Spagnoli, S.Vantadoris: Multi-axial assessment using a simplified critical plane-based criterion, International Journal of Fatigue33 (2011), pp. 969–976Suche in Google Scholar
5 A.Carpinteri, A.Spagnoli, S.Vantadoris: A multi-axial fatigue criterion for random loading, Fatigue and Fracture of Engineering Materials and Structures26 (2003), pp. 513–522Suche in Google Scholar
6 A.Carpinteri, A.Spagnoli, S.Vantadoris, C.Bagni: Structural integrity assessment of metallic components under multi-axial fatigue: The C-S criterion and its evolution, Fatigue and Fracture of Engineering Materials and Structures36 (2013), pp. 870–883Suche in Google Scholar
7 S. Y.Zamrik, R. E.Frishmuth: The effects of out-of-phase biaxial strain cyclic on low cycle fatigue, Experimental Mechanics, (1973), pp. 204–208Suche in Google Scholar
8 K.Walat, T.Łagoda: Lifetime of semi-ductile materials through the critical plane approach, International Journal of Fatigue67, (2014), pp. 73–7710.1016/j.ijfatigue.2013.11.019Suche in Google Scholar
9 T.Łagoda, P.Ogonowski: Criteria of multi- axial random fatigue based on stress, strain and energy parameters of damage in the critical plane, Materialwissenschaft und Werkstofftechnik36 (2005), No. 9, pp. 429–437Suche in Google Scholar
10 M.Kurek, T.Łagoda: Estimation of fatigue life of materials with out-of-parallel fatigue characteristics under block loading, Material Science Forum726 (2012), pp. 181–188Suche in Google Scholar
11 M.Kurek, T.Łagoda: Comparison of fatigue characteristics for same selected structural materials under bending and torsion, Materials Science47, No. 3 (2011), pp. 334–344Suche in Google Scholar
12 K. S.Kim, J. C.Park: Shear strain-based multi-axial fatigue parameters applied to variable amplitude loading, International Journal of Fatigue21 (1999), pp. 475–483Suche in Google Scholar
13 N.Shamsaei, A.Fatemi: Deformation and fatigue behaviours of care-hardened steels in torsion: Experiments and predictions, International Journal of Fatigue31 (2009), pp. 1386–1396Suche in Google Scholar
14 Y.Liu, S.Mahadevan: Strain-based multi-axial fatigue damage modelling, Fatigue and Fracture of Engineering Materials and Structures28 (2005), pp. 1177–1189Suche in Google Scholar
15 J.Li, Z. P.Hang, Q.Sun, W.Lic, R. S.Li: A simple relationship between axial and torsional cyclic parameters, Journal of Materials Engineering and Performance20 (2010), pp. 1289–129310.1007/s11665-010-9748-4Suche in Google Scholar
16 K.Walat, M.Kurek, P.Ogonowski, T.Łagoda: The multi-axial random fatigue criteria based on strain and energy damage parameters on the critical plane for low cycle range, International Journal of Fatigue37 (2012), pp. 100–11110.1016/j.ijfatigue.2011.09.013Suche in Google Scholar
17 A.Niesłony, A.Kurek: Influence of the selected fatigue characteristics of the material on calculated fatigue life under variable amplitude loading, Applied Mechanics and Materials104 (2012), pp. 197–20510.4028/www.scientific.net/AMM.104.197Suche in Google Scholar
18 A.Niesłony, A.Kurek, Ch.El Dsoki, H.Kaufmann: A study of compatibility between two classical fatigue curve models based on some selected structural materials, International Journal of Fatigue39 (2012), pp. 88–9410.1016/j.ijfatigue.2011.03.002Suche in Google Scholar
19 M.Kurek, T.Łagoda, D.Katzy: Comparison of fatigue characteristics of some selected materials, Materials Testing56 (2014), pp. 92–95Suche in Google Scholar
20 K.Walat, T.Łagoda, A.Karolczuk: Fatigue life according to cyclic strain characteristics determined from variable amplitude loading, Materials Testing51, (2009), pp. 286–290Suche in Google Scholar
21 P.Starke, D.Eifler: Fatigue assessment and fatigue life calculation of metals on the basis of mechanical hysteresis, temperature and resistance data, Materials Testing51 (2009), pp. 261–268Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Vorwort/Editorial
- Vorwort
- Fachbeiträge/Technical Contributions
- Fatigue assessment of full-scale welded crane runway girders*
- Cyclic plastic response of nickel-based superalloy at room and at elevated temperatures*
- Fatigue behavior of calcium containing AZ91 magnesium alloys*
- Influences on the thermomechanical fatigue crack growth of the nickel alloy 617*
- Influence of laser cutting on the fatigue limit of two high strength steels*
- Fatigue life and cyclic material behavior of butt-welded high-strength steels in the LCF regime*
- Ratcheting behavior of bearing support structures during windmilling in aero engines*
- Transient micromechanical deformation and thermomechanical fatigue damage in AlSi based piston alloys under superimposed high cycle mechanical and low cycle thermal loading*
- Life time assessment of an aluminum alloy under complex low cycle fatigue loading*
- Testing low-cycle material properties with micro-specimens*
- Estimation of local cyclic plasticity based on a coupled EBSD and TEM analysis*
- Kalender/Calendar
- Kalender
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Vorwort/Editorial
- Vorwort
- Fachbeiträge/Technical Contributions
- Fatigue assessment of full-scale welded crane runway girders*
- Cyclic plastic response of nickel-based superalloy at room and at elevated temperatures*
- Fatigue behavior of calcium containing AZ91 magnesium alloys*
- Influences on the thermomechanical fatigue crack growth of the nickel alloy 617*
- Influence of laser cutting on the fatigue limit of two high strength steels*
- Fatigue life and cyclic material behavior of butt-welded high-strength steels in the LCF regime*
- Ratcheting behavior of bearing support structures during windmilling in aero engines*
- Transient micromechanical deformation and thermomechanical fatigue damage in AlSi based piston alloys under superimposed high cycle mechanical and low cycle thermal loading*
- Life time assessment of an aluminum alloy under complex low cycle fatigue loading*
- Testing low-cycle material properties with micro-specimens*
- Estimation of local cyclic plasticity based on a coupled EBSD and TEM analysis*
- Kalender/Calendar
- Kalender