Startseite Technik Life time assessment of an aluminum alloy under complex low cycle fatigue loading*
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Life time assessment of an aluminum alloy under complex low cycle fatigue loading*

  • Karolina Walat , Tadeusz Łagoda und Marta Kurek
Veröffentlicht/Copyright: 16. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This publication presents an expression for the equivalent strain based on fatigue tests under complex strain state. The respective aluminum alloy was tested under a very low number of cycles. The criterion uses the critical plane determined according to the material kind function. The determined equivalent amplitude for complex proportional and non-proportional loading states is included into the scatter band of the same coefficient for simple loading states. The model based on the proposal by Carpinteri for determination of the critical plane position under a complex strain state can be a useful tool for fatigue life assessment in the case of a very low number of cycles. The expression for the equivalent strain includes both the normal and shear strain histories on the critical plane with suitable weight functions. The determined equivalent amplitude for complex proportional and non-proportional loading states is also included into the scatter band of the same coefficient for simple loading states.

Kurzfassung

Der vorliegende Beitrag präsentiert einen mathematischen Ausdruck für die Äquivalenzdehnung basierend auf Ermüdungsversuchen unter komplexen Dehnungszuständen. Die entsprechende Aluminiumlegierung wurde bei einer sehr geringen Anzahl von Lastwechseln geprüft. Das Kriterium verwendet die kritische Ebene, die anhand der Materialtypfunktion bestimmt wird. Die so bestimmte Äquivalenzamplitude für die komplexen proportionalen und nicht-proportionalen Beanspruchungszustände wurde in einem Streuband für denselben Koeffizienten bei einfachen Beanspruchungszuständen berücksichtigt. Das auf dem Ansatz von Carpinteri zur Bestimmung der Position der kritischen Ebene unter einem komplexen Dehnungszustand basierende Modell kann ein nützliches Werkzeug für die Abschätzung der Ermüdungslebensdauer im Falle sehr niedriger Lastwechselzahlen sein. Der Ausdruck für die Äquivalenzdehnung beinhaltet beides, die Normal- und die Scherdehnungshistorien auf die kritische Ebene mit geeigneten Gewichtungsfunktionen. Die bestimmte Äquivalenzamplitude für die komplexen proportionalen und die nicht-proportionalen Beanspruchungszustände ist ebenfalls in dem Streuband für dieselben Koeffizienten bei einfachen Beanspruchungszuständen eingeschlossen.


§Correspondence Address, Prof. Dr. Tadeusz Lagoda, Opole University of Technology, Ul. Mikołajczyka 5, 45-271 Opole, Poland, E-mail:

Dr. Karolina Walat, born in 1981, studied Environmental Engineering at the Technical University of Opole, Poland, and graduated in 2006 with MSc. Then she completed PhD studies at the Technical University of Opole in 2010. Since 2011, she has been working at this university as a lecturer.

Prof. Dr. Tadeusz Łagoda, born in 1965, studied Mechanical Engineering at the Technical University of Opole, Poland, and graduated in 1989 with MSc. Since 1989, he is working at this university as professor. He completed PhD studies in 1996 and habilitated at Technical University of Wrocław, Poland, in 2001. He received the title of professor in 2007. Now he is working as Professor at the Technical University of Opole in the Faculty of Mechanics and Department of Mechanics and Machine Design.

Dr. Marta Kurek, born in 1985, studied Technological and Computer Engineering Education at the Technical University of Poland (OPole University of Technology), Poland, and graduated in 2009 with MSc. Then she completed PhD studies at the Technical University of Opole in 2013. Since 2012, she has been working at this university as an assistant.


References

1 A.Carpinteri, E.Macha, R.Brighenti, A.Spagnoli: Expected principal stress directions under multi-axial random loading, Part I: Theoretical aspects of the weight function method, International Journal of Fatigue21 (1999), pp. 8388Suche in Google Scholar

2 A.Carpinteri, A.Spagnoli: Multi-axial high cycle fatigue criterion for hard metals, International Journal of Fatigue23 (2001), pp. 135145Suche in Google Scholar

3 A.Carpinteri, A.Spagnoli, S.Vantadoris: Multi-axial fatigue life estimation in welded joints using the critical plane approach, International Journal of Fatigue31 (2009), pp. 188196Suche in Google Scholar

4 A.Carpinteri, A.Spagnoli, S.Vantadoris: Multi-axial assessment using a simplified critical plane-based criterion, International Journal of Fatigue33 (2011), pp. 969976Suche in Google Scholar

5 A.Carpinteri, A.Spagnoli, S.Vantadoris: A multi-axial fatigue criterion for random loading, Fatigue and Fracture of Engineering Materials and Structures26 (2003), pp. 513522Suche in Google Scholar

6 A.Carpinteri, A.Spagnoli, S.Vantadoris, C.Bagni: Structural integrity assessment of metallic components under multi-axial fatigue: The C-S criterion and its evolution, Fatigue and Fracture of Engineering Materials and Structures36 (2013), pp. 870883Suche in Google Scholar

7 S. Y.Zamrik, R. E.Frishmuth: The effects of out-of-phase biaxial strain cyclic on low cycle fatigue, Experimental Mechanics, (1973), pp. 204208Suche in Google Scholar

8 K.Walat, T.Łagoda: Lifetime of semi-ductile materials through the critical plane approach, International Journal of Fatigue67, (2014), pp. 737710.1016/j.ijfatigue.2013.11.019Suche in Google Scholar

9 T.Łagoda, P.Ogonowski: Criteria of multi- axial random fatigue based on stress, strain and energy parameters of damage in the critical plane, Materialwissenschaft und Werk­stofftechnik36 (2005), No. 9, pp. 429437Suche in Google Scholar

10 M.Kurek, T.Łagoda: Estimation of fatigue life of materials with out-of-parallel fatigue characteristics under block loading, Material Science Forum726 (2012), pp. 181188Suche in Google Scholar

11 M.Kurek, T.Łagoda: Comparison of fatigue characteristics for same selected structural materials under bending and torsion, Materials Science47, No. 3 (2011), pp. 334344Suche in Google Scholar

12 K. S.Kim, J. C.Park: Shear strain-based multi-axial fatigue parameters applied to variable amplitude loading, International Journal of Fatigue21 (1999), pp. 475483Suche in Google Scholar

13 N.Shamsaei, A.Fatemi: Deformation and fatigue behaviours of care-hardened steels in torsion: Experiments and predictions, International Journal of Fatigue31 (2009), pp. 13861396Suche in Google Scholar

14 Y.Liu, S.Mahadevan: Strain-based multi-axial fatigue damage modelling, Fatigue and Fracture of Engineering Materials and Structures28 (2005), pp. 11771189Suche in Google Scholar

15 J.Li, Z. P.Hang, Q.Sun, W.Lic, R. S.Li: A simple relationship between axial and torsional cyclic parameters, Journal of Materials Engineering and Performance20 (2010), pp. 1289129310.1007/s11665-010-9748-4Suche in Google Scholar

16 K.Walat, M.Kurek, P.Ogonowski, T.Łagoda: The multi-axial random fatigue criteria based on strain and energy damage parameters on the critical plane for low cycle range, International Journal of Fatigue37 (2012), pp. 10011110.1016/j.ijfatigue.2011.09.013Suche in Google Scholar

17 A.Niesłony, A.Kurek: Influence of the selected fatigue characteristics of the material on calculated fatigue life under variable amplitude loading, Applied Mechanics and Materials104 (2012), pp. 19720510.4028/www.scientific.net/AMM.104.197Suche in Google Scholar

18 A.Niesłony, A.Kurek, Ch.El Dsoki, H.Kaufmann: A study of compatibility between two classical fatigue curve models based on some selected structural materials, International Journal of Fatigue39 (2012), pp. 889410.1016/j.ijfatigue.2011.03.002Suche in Google Scholar

19 M.Kurek, T.Łagoda, D.Katzy: Comparison of fatigue characteristics of some selected materials, Materials Testing56 (2014), pp. 9295Suche in Google Scholar

20 K.Walat, T.Łagoda, A.Karolczuk: Fatigue life according to cyclic strain characteristics determined from variable amplitude loading, Materials Testing51, (2009), pp. 286290Suche in Google Scholar

21 P.Starke, D.Eifler: Fatigue assessment and fatigue life calculation of metals on the basis of mechanical hysteresis, temperature and resistance data, Materials Testing51 (2009), pp. 261268Suche in Google Scholar

Published Online: 2018-05-16
Published in Print: 2015-02-02

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 20.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/120.110692/html
Button zum nach oben scrollen