Home Optimization of the Cutting Parameters for Drilling Magnesium Alloy AZ 91
Article
Licensed
Unlicensed Requires Authentication

Optimization of the Cutting Parameters for Drilling Magnesium Alloy AZ 91

  • Yunus Kayir
Published/Copyright: October 1, 2014
Become an author with De Gruyter Brill

Abstract

In this study, machinability of AZ 91D magnesium alloy, which has been widely used in automotive and aircraft industries, was investigated by using HSS and carbide tools at dry cutting conditions. Taguchi's L18 (2**1 3**2) mixed model was used for the experiments. Drilling parameters such as feed rate, spindle speed and cutting tool were optimized according to the multiple responses (diametral error, circularity and surface roughness) by grey relational analysis. The effects of machining parameters and their interactions on the hole diameter, circularity and surface roughness were determined. The analysis of Taguchi and ANOVA indicated that the influence of drill material on the surface roughness of the drilled hole was high, but on the hole diameter and circularity it was low. Furthermore, the results of grey relational analysis revealed that optimal combination of the drilling parameters (0.3 mm/rev feed rate, carbide tool and 3000 rpm spindle speed) can be used to obtain the minimum diametral error, circularity error and surface roughness.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurde die maschinelle Bearbeitbarkeit der Magnesiumlegierung AZ 91 D, die eine breite Anwendung in der Automobil- und Flugzeugindustrie erfährt, untersucht, indem HSS- und Carbid-Werkzeuge unter trockenen Schneidbedingungen eingesetzt wurden. Für die Experimente wurde Taguchi's gemischtes Modell L18 (2**1 3**2) eingesetzt. Die Bohrparameter, wie die Zufuhrrate, die Spindelgeschwindigkeit und das Schneidwerkzeug wurden entsprechend der multiplen Antworten (diametraler Fehler, Rundheit und Oberflächenrauheit) mittels der sogenannten Grey Relational Analyse optimiert. Die Effekte der Bohrparameter und deren Wechselwirkungen auf den Bohrlochdurchmesser, Rundheit und Oberflächenrauheit wurden bestimmt. Die Analyse nach dem Taguchi und ANOVA Verfahren deutet darauf hin, dass der Einfluss des Bohrwerkstoffes auf die Oberflächenrauheit des gebohrten Loches hoch ist, dass aber der Einfluss auf den Lochdurchmesser und die Rundheit gering ist. Darüber hinaus ergaben die Ergebnisse der Grey Relational Analysis, dass die optimale Kombination der Bohrparameter (0,3 mm/U Zufuhrrate, Carbidwerkzeug und 3000 U/min Spindelgeschwindigkeit) eingesetzt werden kann, um einen minimalen diametralen Fehler, Rundheitsabweichung und Oberflächenrauheit zu erhalten.


Dr. Yunus Kayır is assistant professor in the department of Manufacturing Engineering at the Technology Faculty of the Gazi University in Ankara, Turkey. He obtained his PhD degree from Institute of Science and Technology of Gazi University in CAD/CAM. His research areas include machinability, cutting forces, and CAD/CAM.


References

1 B. L.Mordike, T.Ebert: Magnesium properties – applications – potential, Materials Science and Engineering A302 (2001), pp. 3745Search in Google Scholar

2 K.Kandemir; A. C.Can: Potential of magnesium alloys for the Automotive industry: Journal of Enginnering Science of Pamukkale University9 (2003), pp. 3745Search in Google Scholar

3 F.Öztürk; İ.Kaçar: Investigation of magnesium alloys and applications: Journal of Enginnering Science of Nigde University1 (2012), pp. 1220Search in Google Scholar

4 E. P.DeGarma; J. T.Black; R. A.Kosher: Material and Processing in Manufacturing, 7th Edition, Macmillan, New York (1988), pp. 165175Search in Google Scholar

5 İ.Kacar; F.Öztürk: The last developments in forming of magnesium alloys: Proceedings of the TIMAK 20061 (2006), pp. 354361Search in Google Scholar

6 Z.Pu, O. W.DillonJr, I. S.Jawahir, D. A.Puleo: Microstructural changes of AZ31 magnesium alloys induced by cryogenic machining and its influence on corrosion resistance in simulated body fluid for biomedical applications, Proceedings of the Intern. Conf. ASME/MSEC 20101 (2010), pp. 27127710.1115/MSEC2010-34234Search in Google Scholar

7 Y.Erçayhan; N.Saklakoğlu: The effect of indium element on metalurigical and mechanical properties of AZ91 magnesium alloys, Journal of Technical Sceince of Celal Bayar University1 (2011), pp. 1222Search in Google Scholar

8 M.Kohzu, F.Yoshida, K.Higashi: Evaluation of press formability in magnesium alloy, Materials Science Forum419–422 (2003), pp. 32132610.4028/www.scientific.net/MSF.419-422.321Search in Google Scholar

9 H.Takahashi, Y.Oishi, K.Wakamatsu, N.Kawabe: Tensile properties and bending formability of drawn magnesium alloy pipes, Materials Science Forum419–422 (2003), pp. 34534810.4028/www.scientific.net/MSF.419-422.345Search in Google Scholar

10 N.Ogawa, M.Shiomi, K.Osakada: Forming limit of magnesium alloy at elevated temperatures for precision forging, International Journal of Machine Tools and Manufacture42 (2002), pp. 60761410.1016/S0890-6955(01)00149-3Search in Google Scholar

11 Z.Zhang, A.Couture, A.Luo: An investigation of the properties of Mg-Zn-Al alloys, Scripta Materialia39 (1998), pp. 455310.1016/S1359-6462(98)00122-5Search in Google Scholar

12 Z.Trojanová, P.Lukáč: Compressive deformation behaviour of magnesium alloys, Journal of Materials Processing Technology, 162–163 (2005), pp. 416421Search in Google Scholar

13 S.Spigarelli, D.Ciccarelli, E.Evangelista: Compressive deformation of an Mg-Al-Si-RE alloy between 120 °C and 180 °C, Materials Letters58 (2004), pp. 46046410.1016/S0167-577X(03)00525-1Search in Google Scholar

14 S.Yoshihara, H.Nishimura, H.Yamamoto, K. I.Manabe: Formability enhancement in magnesium alloy stamping using a local heating and cooling technique: Circular cup deep drawing process, Journal of Materials Processing Technology142 (2003), pp. 60961310.1016/S0924-0136(03)00248-6Search in Google Scholar

15 S.Yoshihara, H.Yamamoto, K.Manabe, H.Nishimura: Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique, Journal of Materials Processing Technology143–144 (2003), pp. 61261510.1016/S0924-0136(03)00442-4Search in Google Scholar

16 H.Takuda, T.Yoshii, N.Hatta: Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet, Journal of Materials Processing Technology89–90 (1999), pp. 13514010.1016/S0924-0136(99)00039-4Search in Google Scholar

17 D.Hamana, M.Bouchear, A.Derafa: Effect of plastic deformation on the formation and dissolution of transition phases in Al-12 wt.-% Mg alloy, Materials Chemistry and Physics57 (1998), pp. 9911010.1016/S0254-0584(98)00191-6Search in Google Scholar

18 K.Palanikumar: Experimental investigation and optimization in drilling of GFRP composites: Measurement, Journal of the International Measurement Confederation44 (2011), pp. 2138214810.1016/j.measurement.2011.07.023Search in Google Scholar

19 T.Rajmohan, K.Palanikumar: Optimization of machining parameters for multi-performance characteristics in drilling hybrid metal matrix composites, Journal of Composite Materials46 (2012), pp. 86987810.1177/0021998311412635Search in Google Scholar

20 R.Ertan: Optimization of GTAW parameters for the tensile strength of AISI 304 stainless steel welds using the Taguchi method, Materials Testing54 (2012), pp. 16316810.3139/120.110311Search in Google Scholar

21 S.Bhowmick, A. T.Alpas: The role of diamond-like carbon coated drills on minimum quantity lubrication drilling of magnesium alloys, Surface and Coatings Technology205 (2011), pp. 5302531110.1016/j.surfcoat.2011.05.037Search in Google Scholar

22 S.Balasubramanian, S.Ganapathy: Grey relational analysis to determine optimum process parameters for wire electro discharge machining (WEDM): International Journal of Engineering Science and Technology3 (2011), pp. 95101Search in Google Scholar

23 M.Kurt, Y.Kaynak, E.Bagci: Evaluation of drilled hole quality in Al 2024 alloy, International Journal of Advanced Manufacturing Technology37 (2008), pp. 1051106010.1007/s00170-007-1049-1Search in Google Scholar

24 M. T.Hayajneh: Hole quality in deep hole drilling: Materials and Manufacturing Processes16 (2001), pp. 14716410.1081/AMP-100104297Search in Google Scholar

Published Online: 2014-10-01
Published in Print: 2014-01-02

© 2014, Carl Hanser Verlag, München

Downloaded on 17.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110523/html?lang=en&srsltid=AfmBOopMEJp7h_VJVezCDpHKusbEYIbYgPAfkp0HDTuC373LeQUdWpLf
Scroll to top button