Effects of Squeeze Pressure on Microstructure, Porosity and Hardness of an In-Situ Mg2Si/Al–Si–Cu Composite
-
Gökhan Ozer
Abstract
The effect of applied pressure on microstructures and properties of an in-situ formed Mg2Si/Al-Si-Cu reinforced metal matrix composite fabricated by squeeze casting are investigated. Due to the wide solidification range and the high viscosity, this type of composites is prone ro shrinkage and gas porosity. In order to improve cast ability and to obtain better properties, the squeeze casting technique has been used. The results showed that primary Mg2Si crystals are formed by adding pure Mg into the hypereutectic Al-Si-Cu alloy (A380). It was found that, with the application of 30 MPa and 40 MPa pressure during solidification, the average size of primary Mg2Si particulates decreases from about 87 µm to about 21 and 18 µm and that the average porosity values of the cast samples is significantly decreased from 8.75 % to 0.50 and 0.35 %, respectively.
Kurzfassung
Die Effekte des anliegenden Pressdruckes auf die Mikrostruktur und die Eigenschaften eines in-situ geformten und mittels Pressgießens hergestellten Mg2Si/Al-Si-Cu Metallmatrix-Komposits wurden untersucht. Aufgrund des großen Erstarrungsintervalls und der hohen Viskosität hat dieser Komposittyp eine hohe Schrumpfung und ist anfällig für Porenbildung. Um die Gießbarkeit und die Eigenschaften zu verbessern, wurde das Pressdruckverfahren angewendet. Die Ergebnisse zeigen, dass infolge der Zugabe von reinem Mg in die hypereutektische Al-Si-Cu-Legierung (A 380) primäre Mg2Si-Kristalle gebildet werden. Es stellte sich heraus, dass bei einem Druck von 30 bis 40 MPa während der Erstarrung die durchschnittliche Größe der Mg2Si Partikel von etwa 87 µm auf etwa 21 und18 µm abnimmt und dass die durschnittliche Porösität der Proben signifikant von 8,75 % auf 0,5 und 0,35 % reduziert werden kann.
References
1 T. P. D.Rajan, K.Narayan Prabhu, R. M.Pillai, B. C.Pai: Solidification and casting/mould interfacial heat transfer characteristics of aluminum matrix composites, Composites Science and Technology, Vol. 67 (1) (2007), pp. 70–78.10.1016/j.compscitech.2006.03.028Suche in Google Scholar
2 B. S. S.Daniel, V. S. R.Murthy, G. S.Murty: Metal-ceramic composites via in-situ methods, Journal of Materials Processing Technology, 68 (2) (1997), pp. 132–155.10.1016/S0924-0136(96)00020-9Suche in Google Scholar
3 G.Frommeyer, S.Beer, K.Von Oldenburg: Microstructure and properties of as-cast intermetallic Mg2Si-Al alloys, Zeitschrift für metallkunde, 81 (1990), pp. 809–815.Suche in Google Scholar
4 G.Frommeyer, S.Beer and K.Von Oldenburg: Microstructure and mechanical properties of mechanically alloyed intermetallic Mg2Si-Al alloys, Zeitschrift für metallkunde, 85 (1994), pp. 372–377.Suche in Google Scholar
5 Q. D.Qin, W. X.Li, K. W.Zhao, S. L.Qiu, Y. G.Zhao: Effect of modification and aging treatment on mechanical properties of Mg2Si/Al composite, Materials Science and Engineering A527 (2010), pp. 2253–2257.10.1016/j.msea.2009.12.017Suche in Google Scholar
6 J.Zhang, Z.Fan, Y. Q.Wang, B. L.Zhou: Microstructural evolution of the in situ Al-15wt.%Mg2Si composite with extra Si contents, Scripta mater., 42 (2000), pp. 1101–1106.10.1016/S1359-6462(00)00338-9Suche in Google Scholar
7 Q. D.Qin, Y. G.Zhao, K.Xiu, W.Zhou, Y. H.Liang: Microstructure evolution of in situ Mg2Si/Al-Si-Cu composite in semisolid remelting processing, J. Mater. Sci. Eng. A407 (2005), pp. 196–200.10.1016/j.msea.2005.07.021Suche in Google Scholar
8 Y. G.Zhao, Q. D.Qin, W.Zhou, Y. H.Liang: Microstructure of the Ce-modified in situ Mg2Si/Al–Si–Cu composite, Journal of Alloys and Compounds, 389 (1-2) (2005), pp. L1–L4.10.1016/j.jallcom.2004.08.003Suche in Google Scholar
9 M.Emamy, H. R.Jafari Nodooshan, A.Malekan: The microstructure, hardness and tensile properties of Al–15%Mg2Si in situ composite with yttrium addition, Materials and Design, 32 (2011), pp. 4559–456610.1016/j.matdes.2011.04.026Suche in Google Scholar
10 Q. D.Qin, W. X.Li, K. W.Zhao, S. L.Qiu, Y. G.Zhao: Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite, J. Mater. Sci. Eng. A, 527 (2010), pp. 2253–2257.10.1016/j.msea.2009.12.017Suche in Google Scholar
11 J.Zhang, Z.Fan, Y. Q.Wang, B. L.Zhou: Effect of cooling rate on the microstructure of hypereutectic Al–Mg2Si alloy, Journal of Materials Science Letters. 1920, (2000), pp. 1825–1828.10.1023/A:1006702709371Suche in Google Scholar
12 Y. G.Zhao, Q. D.Qin, Y. Q.Zhao, Y. H.Liang, Q. C.Jiang: In situ Mg2Si/Al–Si composite modified by K2TiF6”, Materials Letters, 58 (2004), pp. 2192–2194.10.1016/j.matlet.2004.01.016Suche in Google Scholar
13 R.Hadian, M.Emamy, N.Varahram, N.Nemati: The effect of Li on the tensile properties of cast Al–Mg2Si metal matrix composite, Materials Science and Engineering A, 490 (2008), pp. 250–257.10.1016/j.msea.2008.01.039Suche in Google Scholar
14 Y. G.Zhao, Q. D.Qin, Y. H.Liang, W.Zhou, Q. C.Jiang: In-situ Mg2Si/Al-Si-Cu composite modified by strontium, Journal of Materials science, 40 (2005), pp. 1831–1833.10.1007/s10853-005-0705-9Suche in Google Scholar
15 R. P.Taylor, S. T.McClain and J. T.Berry: Uncertainty Analysis of Metal-Casting Porosity Measurements Using Archimedes’ Principle, International Journal of Cast Metals, 11 (1999), pp. 247–257.Suche in Google Scholar
16 V. S.Zolotorevsky, N. A.Belov and M. V.Glazoff: Casting aluminum Alloys, Chapter Five, Alcoa Center, PA, U.S.A, 200710.1016/B978-008045370-5.50007-9Suche in Google Scholar
17 J. R.Franklin, A. A.Das: Squeeze casting – a review of the status, British Foundryman77 (3) (1984), pp. 150–158.Suche in Google Scholar
18 G. A.Chadwick, T. M.Yue: Principles and applications of squeeze castings, Met. Mater.5 (1) (1989), pp. 6–12.Suche in Google Scholar
19 M. R.Ghomashchi, A.Vikhrov: Squeeze casting: an overview, Journal of Materials Processing Technology. 101 (2000), pp. 1–9.10.1016/S0924-0136(99)00291-5Suche in Google Scholar
20 JohnCampbell: Castings, Elsevier Butterworth-Heinemann, Oxford, 1993.Suche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Prüfung und Überwachung von Komponenten intralogistischer Anlagen
- Effects of Welding Parameters on the Mechanical Properties of Inert Gas Welded 6063 Aluminum Alloys
- Performance of Automotive Composite Bumper Beams and Hood Subjected to Frontal Impacts
- Effects of Squeeze Pressure on Microstructure, Porosity and Hardness of an In-Situ Mg2Si/Al–Si–Cu Composite
- ANN-Based Wear Performance Prediction for Plasma Nitrided Ti6Al4V Alloy
- Artificial Neural Network (ANN) Approach to Hardness Prediction of Aged Aluminium 2024 and 6063 Alloys
- Determination of Mechanical Properties and Failure Pressure in Composite Cylinders
- Non-Linear Modelling of PM Brake Lining Wear Behaviour
- Service Life Estimation for a Reformer Tube against Creep Dominated Failure
- Cavitation Erosion Behaviour of Stainless Steels with Constant Nickel and Variable Chromium Content
- Vorschau/Preview
- Vorschau
- Kalender
- Kalender
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Prüfung und Überwachung von Komponenten intralogistischer Anlagen
- Effects of Welding Parameters on the Mechanical Properties of Inert Gas Welded 6063 Aluminum Alloys
- Performance of Automotive Composite Bumper Beams and Hood Subjected to Frontal Impacts
- Effects of Squeeze Pressure on Microstructure, Porosity and Hardness of an In-Situ Mg2Si/Al–Si–Cu Composite
- ANN-Based Wear Performance Prediction for Plasma Nitrided Ti6Al4V Alloy
- Artificial Neural Network (ANN) Approach to Hardness Prediction of Aged Aluminium 2024 and 6063 Alloys
- Determination of Mechanical Properties and Failure Pressure in Composite Cylinders
- Non-Linear Modelling of PM Brake Lining Wear Behaviour
- Service Life Estimation for a Reformer Tube against Creep Dominated Failure
- Cavitation Erosion Behaviour of Stainless Steels with Constant Nickel and Variable Chromium Content
- Vorschau/Preview
- Vorschau
- Kalender
- Kalender