Startseite Effects of Thermal Oxidation and Subsequent Pickling on Pitting Geometry of Austentitic Stainless Steels in Chloride Solutions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of Thermal Oxidation and Subsequent Pickling on Pitting Geometry of Austentitic Stainless Steels in Chloride Solutions

  • Vesna Alar , Ivan Esih , Ivan Budic und Slavonski Brod
Veröffentlicht/Copyright: 26. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Harmful effects of thermal oxides formed on austenitic stainless steels (SS) like AISI 304 and 316L by heating in air or other oxidizing gases on their pitting liability in chloride solutions have been studied by pursuing geometric characteristics of corrosion process (pits density, their depths, and mouth areas, ie. penetrating and superficial detrimental consequences etc.). The possibility of preventing the decay of thermally oxidized austenitic SS by chemical removal (pickling) of oxides before exposure to chloride solutions was successfully applied on simple specimens but serious difficulties arose on welded parts and on parts exposed to other temperature gradients during manufacture or in exploitation.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden die schädlichen Auswirkungen von thermischen Oxiden, die sich durch Erhitzen in Luft auf austenitischen Stählen wie AISI 304 und 316 L bilden, hinsichtlich der Lochkorrosionsbeständigkeit untersucht, in dem den Charakteristika der Lochgeometrie (Lochdichte, Lochtiefe und Lochränder, also Durchdringung und schädliche Konsequenzen für die Oberfläche) nachgegangen wurde. Die Möglichkeit zur Prävention einer Schädigung von thermisch oxidierten austenitischen Stählen durch chemische Entfernung der Oxide (Beizen) vor der Exposition in den Chloridlösungen wurde erfolgreich an einfachen Proben nachgewiesen. Jedoch ergaben sich erhebliche Schwierigkeiten für geschweißte Teile und an solchen Proben, die anderen thermischen Gradienten während der Fertigung oder Produktion ausgesetzt waren


Vesna Alar, born 1966, graduated at the Faculty of Chemical Engineering and Technology at the University of Zagreb in 1991. Since 1991 she has been working at the Department of Materials of the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb. In 1994 she acquired the Master's degree at the Faculty of Chemical Engineering and Technology and the Doctor's degree in 2000 at the Faculty of Mechanical Engineering and Naval Architecture in Zagreb. The scientific work includes research in the field of corrosion and protection metals.

Ivan Esih, born 1929 in Zagreb graduated in Chemical Engineering in 1954 at the Faculty of Chemical Technology, University of Zagreb. He attained his Ph. D. in Chemistry in 1970 at the University of Zagreb. His scientific work includes research in the fields of corrosion processes (especially pitting of stainless steels and erosion corrosion), application and evaluation of protective coatings on metals and electroforming of moulds and abrasive tools.

Ivan Budic, born 1948, graduated at the Faculty of Mechanical Engineering and Naval Architecture (FSB) at the University of Zagreb in 1976. He acquired the Master's degree in 1988 at FSB, University of Zagreb and Doctor's degree in 1994. The scientific work includes research in the field of foundry design and manufacturing processes.


References

1 G.Herbsleb, E.Szederjei: Korrosionsbestndigkeit von Verbindungen von Rohren aus nichtrostenden Sthlen in Wssern, Werkstoffe und Korrosion (Materials and Corrosion)40 (1989), pp. 651660Suche in Google Scholar

2 S.Turner, F. P. A.Robinson: The effect of the surface oxides produced during welding on the corrosion resistance of stainless steels, Corrosion45 (1989), pp. 710717Suche in Google Scholar

3 P. K.Rastogi, B. K.Shah, A. K.Sinha, P. G.Kulkarni: Effect of oxide film on pitting susceptibility of 304 austenitic stainless steel, Brit. Corros. J.29 (1994), pp. 7880Suche in Google Scholar

4 J. R.Kearns, G. E.Moller: Reducing heat tint effects on the corrosion-resistance of austenitic stainless alloys, Mater. Perform.33 (1994), pp. 5761Suche in Google Scholar

5 C. P.Dillon: Cleaning, pickling, and passivation of stainless steels, Materials Performance, 33 (1994), pp. 6264Suche in Google Scholar

6 G. T.Burstein, P. C.Pistorius: Surface roughness and the metastable pitting of stainless steels in Chloride solutions, Corrosion51 (1995), pp. 380387Suche in Google Scholar

7 G.Capobianco, G.Faccin, A.Gambirasi, G.Moretti, G.Quartarone, G.Sandon: New passivating pastes for stainless steel without nitric acid, Journal of Applied Electrochemistry, 29 (1999), pp. 13171322Suche in Google Scholar

8 H.Dinnebier, J.Schneider: Korrosionsverhalten des Stahls WL 1.3964, Mater. Corr.58 (2007), pp. 522526Suche in Google Scholar

9 H. A.Tuthill, E. R.Avery, R. A.Covert: Cleaning stainless steel surfaces prior to sanitary service, Dairy, Food and Environmental Sanitation17 (1997), pp. 110Suche in Google Scholar

10 I.Esih, V.Alar, I.Juraga: Influence of thermal oxides on pitting corrosion of stainless steel in chloride solutions, Corr. Eng. Sci. Technol.40 (2005), pp. 110115Suche in Google Scholar

11 J. R.Davis: ASM handbook of stainless steels, ASM, Materials Park, OH1994, pp. 238247Suche in Google Scholar

12 V.Alar, JuragaI., F.Kapor: Pitting Liability of Thermally Oxidised Austenitic Steel, Materials Testing (Materialprufung)49 (2007), pp. 325329Suche in Google Scholar

13 V.Alar, V.Alar, V.Rede: Characterization of Thermal Oxides on Austenitic Stainless Steel, Materials Testing50 (2008), pp. 312317Suche in Google Scholar

14 V.Alar, I.Juraga, B.Runje, A.Alar: Influence of glyoxal on localized corrosion of austenitic stainless steel in spring water, Materialwis senschaft und Werkstofftechnik40 (2009), pp. 910912Suche in Google Scholar

15 V.Alar, B.Runje, G.Baric: Influence of surface texture on electrochemical potential, Materialwissenschaft und Werkstofftechnik41 (2010), pp. 875878Suche in Google Scholar

16 S. S.Mahmoudy, M. M.Ahmed: Effect of colouring process on pitting susceptibility of Austenitic stainless steel, J. Mater. Sci. Technol.24 (2008), pp. 400407Suche in Google Scholar

17 H.Fujikawa, N.Maruyama: Corrosion behaviour of austenitic stainless steels in the high chloride-containing environment, Materials Science and Engineering A120–121, (1989), pp. 301306Suche in Google Scholar

18 M. E.Somervuori, L. S.Johansson, M. H.HeInonen, D. H. D. van Hoecke, N.Akdut: Characterisation and corrosion of spot welds of austenitic stainless steels, Materials and Corrosion55 (2004), pp. 421436Suche in Google Scholar

Published Online: 2013-05-26
Published in Print: 2011-10-01

© 2011, Carl Hanser Verlag, München

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110267/html?lang=de
Button zum nach oben scrollen