Bio-Medical Materials in Human Joint Implants — A Review
-
Hassan S. Hedia
Abstract
Since the introduction of aseptic surgery by Lister towards the end of the eighteenth century, engineering materials have been implanted into the human body in many forms. Implant surgery has developed to the extent that implants are now used in most branches of surgery and are becoming increasingly more sophisticated. Orthopaedic surgery probably uses more implants than any other branch of medicine. Fracture fixation being one of the oldest and most common applications. This literature review tries to inclusively summarize the recent development in bio-medical materials and its applications in human joint implants up to year 2010.
Kurzfassung
Seit Einführung der aseptischen Chirugie durch Lister gegen Ende des 18. Jahrhunderts warden Werkstoffe in vielfältiger Weise in den menschlichen Körper eingesetzt. Die Implantatchirugie hat sich so weit entwickelt, das heute Implantate in fast allen chirugischen Bereichen verwendet werden und sie immer höheren Ansprüchen genügen. In der Orthopädie werden offensichtlich mehr Implantate als in iregendeinem anderen medizinischen Bereich eingesetzt. Die Bruchfixierung stellt hierbei eines der ältesten und der häufigsten Einsatzgebiete dar. Die vorliegende Literaturstudie versucht einen möglichst umfassenden Überblick zu den neuesten Entwicklungen von biomedizinischen Werkstoffen und ihren Anwendungen in Humangelenken bis zum Jahr 2010 zu geben.
Literatur
1 D.Dowson and V.Wright, Editors, An introduction to the biomechanics of joints and joint replacement, Mechanical Engineering Publications Ltd, London (1981).Search in Google Scholar
2 http://hsc.csu.edu.au/senior_science/core/bionics/9_3_3/933net.htmlSearch in Google Scholar
3 http://hsc.csu.edu.au/senior_science/core/bionics/9_3_1/931net.htmlSearch in Google Scholar
4 http://www.zimmer.com/zportal/page?PID=pgBodyLayout.html&XML=zimmer.un-00.en.consumer.service.education.pgHip-Surgery.xmlSearch in Google Scholar
5 D. F.Williams: Definitions in Biomaterials, Elsevier, Amsterdam (1987)Search in Google Scholar
6 D. F.Williams: Medical and Dental Materials, Pergamon Press, Oxford (1990)Search in Google Scholar
7 J. T.Scales: Arthroplasty of the hip using foreign materials: A history, Proceedings of the Institution of Mechanical Engineers 181 (1967), Part 3J, pp. 63–8410.1243/PIME_CONF_1966_181_208_02Search in Google Scholar
8 D.Dowson, J. R.Atkinson, K.Brown: The wear of high molecular weight polyethylene with particular reference to its use in arti- ficial human joints, Advances in Polymer Friction and Wear5B (1975), pp. 533–548Search in Google Scholar
9 J. R.Atkinson, J. M.Dowling, R. Z.Cicek: Materials for internal prostheses: The present position and possible future developments, Journal of Biomaterials1 (1980), No. 2, pp. 89–9310.1016/0142-9612(80)90005-8Search in Google Scholar
10 AESCULAP Implants and Instruments for Osteosynthesis Catalogue (186-C/2/87), Aesculap-Werke, Germany (1987)Search in Google Scholar
11 The Intermedics APR Universal Hip System With Cancellous-Structured Titanium, Catalogue of Internledics Orthopedics Incorporation (1987)Search in Google Scholar
12 The Intermedics PREMIER-TOTAL HIP System, A Natural-Implant, Catalogue of Intermedics Orthopedics Incorporation, Ref. No. 512/835- (1000-01-600), Sulzer Medica (1971)Search in Google Scholar
13 The Intermedics APR Universal Hip System Collared Revision Stem, Catalogue of Intermedics Orthopedics Incorporation (1989)Search in Google Scholar
14 PERFECTA Femoral Prostheses with T-Matrix Acetabular Options Surgical Protocol, Catalogue by ORTHOMET Incorporation, USA (1990)Search in Google Scholar
15 Weber Permalock Hip Prostheses Product Information, Catalogue by ALLOPRO, Ref. No. 1661d/e/f – Ed. 11/90, Sulzer Medica (1990)Search in Google Scholar
16 J. C.Anderson: High density and ultra-high molecular weight polyethylenes: Their wear properties and bearing applications, Tribology International (1982), pp. 43–4710.1016/0301-679X(82)90111-6Search in Google Scholar
17 A.Unsworth: Tribology of human and artificial joints, Proceedings of the Institution of Mechanical Engineers 205 (1991), Part H3, pp. 163–172Search in Google Scholar
18 J.Fisher, D.Dowson: Tribology of total artificial joints, Proceedings of the Institution of Mechanical Engineers 205 (1991), Part H2, pp. 73–79Search in Google Scholar
19 J. M.Dowling, J. R.Atkinson, D.Dowson, J.Charnley: Characterization of worn polyethylene acetabular cups in relation to service time in the human body, Mechanical Properties of Biomaterials (1980), pp. 39–52Search in Google Scholar
20 H.Ishikawa, H.Fujiki, K.Yasuda: Contact analysis of UHMWPE articular plate in artificial knee joint during gait movement, Journal of Biomedical Engineering118 (1996), No.3, pp. 377–386Search in Google Scholar
21 I. C.Clarke, H.McKellop: The wear of Derlin 150 compared with polyethylene, polyester and PTFE; Mechanical Properties of Biomaterials (1980), pp. 27–37Search in Google Scholar
22 R. L.Fusaro: Self-lubricating polymer composites and polymer transfer film lubrication for space applications, Tribology International90 (1990), No. 2, pp. 105–12210.1016/0301-679X(90)90043-OSearch in Google Scholar
23 G. M.Farling, K.Greer: An improved bearing material for joint replacement prostheses: Carbon fibre-reinforced ultra high molecular weight polyethylene, Mechanical Properties of Biomaterials (1990), pp. 53–64Search in Google Scholar
24 A. I.Sviridyonok: Self-lubrication mechanisms in polymer composites, Tribology International24 (1991), No.1, pp. 37–4310.1016/0301-679X(91)90061-DSearch in Google Scholar
25 U. S.Tewari, J.Bijwe, J. N.Mathur, I.Sharma: Studies on abrasive wear of carbon fiber (short) reinforced polyamide composites, Tribology International25 (1992), No. 1, pp. 53–6010.1016/0301-679X(92)90121-3Search in Google Scholar
26 C. G.Clarke, C.Allen: The water lubricated, sliding wear behaviour of polymeric materials against steel, Tribology International24 (1991), No. 2, pp. 109–11810.1016/0301-679X(91)90041-7Search in Google Scholar
27 J. K.Lancaster: The lubricated wear of polymers, Proceedings of the 11th Leeds-Lyon Symposium on Lubricated Wear, London (1985)Search in Google Scholar
28 K.Ikeuchi, M.Oka: The role of synovial fluid in joint lubrication, Tribology Series 30: Lubricants and Lubrication (1995), pp. 65–71Search in Google Scholar
29 D.Dowson, I. W.Linnett: A Study of the wear of ultra high molecular weight polyethylene against a high alumina ceramic, Mechanical Properties of Biomaterials (1980), pp. 3–25Search in Google Scholar
30 J.Hinterberger, M.Ungethum, W.Plitz: Tribological properties of aluminium oxide ceramics, Mechanical Properties of Biomaterials (1980), pp. 73–82Search in Google Scholar
31 J. T.Scales, K. W. J.Wright: Stanmore total hip replacement with ceramic femoral head, Mechanical Properties of Biomaterials (1980), pp. 103–109Search in Google Scholar
32 F.Hild, D.Marquis, O.Kadouch, J. P.Lambelin: Analysis of the failure of ceramics due to subcritical crack growth, Journal of Engineering Materials and Technology118 (1996) No. 3, pp. 343–34810.1115/1.2806816Search in Google Scholar
33 Y. S.Wang, S. M.Hsu, R. G.Munro: A wear model for alumina sliding wear, Proceedings of the Japan International Tribology Conference (1990), pp. 1225–1230Search in Google Scholar
34 M. G.Gee: Results from a UK interlaboratory project on dry sliding wear of alumina, Wear Testing of Advanced Materials (1992), pp. 129–15010.1520/STP23862SSearch in Google Scholar
35 A. J.Perez-Unzueta, J. H.Beynon, M. G.Gee: The effect of surrounding atmosphere on the sliding wear of alumina, Wear146 (1991), pp. 179–19610.1016/0043-1648(91)90233-KSearch in Google Scholar
36 M. G.Gee: The formation of aluminium hydroxide in the sliding wear of alumina, Wear153 (1992), pp. 201–22710.1016/0043-1648(92)90270-ISearch in Google Scholar
37 M. G.Gee: Wear testing and ceramics (Donald Julius Groen Prize Paper), Journal of Engineering Tribology208 (1994), Part J, pp. 153–16610.1243/PIME_PROC_1994_208_366_02Search in Google Scholar
38 F.Hild, D.Marquis, O.Kadouk, J. P.Lambelin: Analysis of the failure of ceramics due to subcritical crack growth, Journal of Engineering Materials and Technology118 (1996), pp. 343–34810.1115/1.2806816Search in Google Scholar
39 T. M.Keaveny, D. L.Bartel: Fundamental load transfer patterns for press-fit, surface-treated intramedullary fixation stems, Journal of Biomechanics27 (1994), No. 9, pp. 1147–115710.1016/0021-9290(94)90055-8Search in Google Scholar
40 T.Yamamuro, T.Nakamura, R.Kasai, Y.Matsuda, K.Ido: A new model of hip prosthesis made of high-tech materials, Biomedical Engineering-Applications, Basis and Communications4 (1992), No. 6, pp. 610–612Search in Google Scholar
41 N. D.Cristescu: ASME 1995 Nadai Lecture – Plasticity of porous and particulate materials, Journal of Engineering Materials and Technology118 (1996), pp. 145–15610.1115/1.2804880Search in Google Scholar
42 R.Shirandami, I. I.Esat: New design of hip prosthesis using carbon fiber reinforced composite, Journal of Biomedical Engineering12 (1990), pp. 19–2210.1016/0141-5425(90)90109-ZSearch in Google Scholar
43 E.Wintermantel, B.Koch, J.Mayer: CAD, CAE and CAM for a new anisotropic carbon fiber reinforced hip endoprosthesis stem technology – Test procedures and qualifying preclinical results, Biomedical Engineering-Applications, Basis and Communications6 (1994), No. 1, pp. 19–21Search in Google Scholar
44 M.Akay, N.AsIan: An estimation of fatigue life for a carbon fibre/polyether ether ketone hip joint prosthesis, Journal of Engineering in Medicine209 (1995), Part H, pp. 91–10310.1243/PIME_PROC_1995_209_325_02Search in Google Scholar PubMed
45 Z. P.Bazant, I. M.Daniel, Z.Li: Size effect and fracture characteristics of composite laminates, Journal of Engineering Materials and Technology118 (1996), pp. 317–32410.1115/1.2806812Search in Google Scholar
46 D. J.Wood: The characterization of particulate debris obtained from failed orthopedic implants – A research report, International Symposium for Biomaterials (1993), http://www.engr.sjsu.edu/WofMatE/projects/srproject/srproj3.htmlSearch in Google Scholar
47 H. S.Hedia, A. A. A.Abdel-Shafi, N.Fouda: The effect of elastic modulus of the metal backing material on the fatigue notch factor and stress, J. Bio-Medical Materials and Engineering10 (2000), No. 2000–3, pp. 141–156Search in Google Scholar
48 H. S.Hedia: Stiffness optimization of cement and stem materials in total hip replacement, J. Bio-Medical Materials and Engineering11 (2001), No. 1, pp. 1–10Search in Google Scholar
49 H.S.Hedia: Stress and Strain Distribution Behavior in the Bone Due to the Effect of Cancellous bone, Dental Implant Material and the Bone Height, in: J. Bio-Medical Materials and Engineering, Vol 12, No.2, pp. 111–119, 2002.Search in Google Scholar
50 Kay L.Roybal: Pure titanium medical implants, Sicence Technology Highlights from the DOE National Laboratory Number 58 (June 26, 2000), Available http://www.lanl.gov/worldview/Search in Google Scholar
51 J. Millican: The Surface Modification of titanium, in: 11th Annual SEA Student Technical Conference In Collaboration with the 100 th Centennial Celebration of the National Institute of Standards & Technology (NIST), (October, 2001), pp 256–258.Search in Google Scholar
52 Medical Catalogue, Hip Implant Made From Composite Materials, Medical Technologies Partnering Event (2001), http://www.finn medi.fi/medica2001partnerihaku/catalo/Medica.pdfSearch in Google Scholar
53 H. S.Hedia, D. C.Barton, J.Fisher: Material optimization for femoral component of hip prosthesis based on the fatigue notch factor approach, J. Bio-Medical Materials and Engineering7 (1997), pp. 83–98Search in Google Scholar
54 H. S.Hedia: Shape and material optimization of Charnley prosthesis to minimize stress shielding, 1st Minia International Conference for Advanced Trends in Engineering (MICATE’99) Vol. 5, pp. 31–59Search in Google Scholar
55 H. S.Hedia: Parametric optimisation of materials for acetabular cup, J. Bio-Medical Materials and Engineering11 (2001), No. 2, pp. 79–88Search in Google Scholar
56 H.S.Hedia: A New Design of Cement and Stem Stiffness in Total Hip Replacement Using FEA and Optimisation Techniques, in: 7th Cairo University International Conference on Mechanical Design & Production (MDP-7), (February 15–17, 2000), pp 250–254.Search in Google Scholar
57 J.Charnley: Anchorage of the femoral head of the prosthesis to shaft of the femur, in: Journal of bone and Joint Surgery JBJS42B (1960), pp. 28–30.10.1302/0301-620X.42B1.28Search in Google Scholar PubMed
58 J.Charnley: Low Friction Anthroplasty of the Hip, Springer, Berlin (1979), pp. 115–13010.1007/978-3-642-67013-8Search in Google Scholar
59 B. M.Wroblewski: 15 to 21 year results with Charnley low friction arthroplasty, Clin. Orthop. Rel. Res.211 (1986), pp. 30–3510.1097/00003086-198610000-00005Search in Google Scholar
60 Krause, W. and Mathis, R.S. “Fatigue properties of acrylic bone cements”, J. Biomed. Mat. Res. 2.2, (1988), pp. 37–53Search in Google Scholar
61 D.Taylor, J. M.Moalic, F. M.Clarke, B.McCormack, J.Sheehan: Fibre reinforced bone cement, in: Eng. In Med., 17, (1988), pp. 31–35.Search in Google Scholar
62 G.A.Bell; P.J.Hill: Rubber reinforced polymers for bone cement, in: Interfaces in Medicine and Mechanics, Ed. by K.R. William; in: Elsevier Science Publishers, England, (1989), pp. 317–330.Search in Google Scholar
63 B.Weightman, M. A.Freeman, P. A.Revell: The mechanical properties of cement and lossening of the femoral hip replacements, Journal of Bone and Joint Surgery 69-B (1987), No. 4, pp. 558–564Search in Google Scholar
64 K.Kawanage, J.Tamura, T.Yamamuro, T.Nakamura, T.Kokubo, S.Yoshihara: A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder, J. Appl. Biomater.4 (1993), pp. 135–14110.1002/jab.770040204Search in Google Scholar
65 N.C.Nguyen; W.J.Maloney; and R.H.Dauskardt: Mechanics and Mechanisms of Crack Growth at or Near Interfaces in Cemented Load Bearing Prostheses, in: 19th Annual Meeting of the American Society of Biomechanics. Stanford University, (August 24–26, 1995), pp. 145–146.Search in Google Scholar
66 R. M.Pilliar: Powder metal made orthopaedic implants with porous surface for fixation by tissue ingrowth, Clin Orthop Rel. Res.176 (1983), pp. 42–5110.1097/00003086-198306000-00007Search in Google Scholar
67 J.Black: Orthopaedic Biomaterials, Churchill, Livingstone, New York, (1988), pp. 278–283Search in Google Scholar
68 S.Nasser, P.A.Campbell, D.Kilgus: Cementless joint arthroplasty prostheses with titanium alloy articular surfaces, in: Clin. Orthop. Rel. Res.261, (1990), pp. 171–185.Search in Google Scholar
69 L. L.Hench, E. C.Ethridge: Biomaterials on Interface Approach, Academic Press, New York (1982), pp. 244–255Search in Google Scholar
70 H.Oonishi: Mechanical and chemical bonding of artificial joints, Clinical Materials5 (1990), pp. 217–23310.1016/0267-6605(90)90021-MSearch in Google Scholar
71 SwRI Keratin, Materials Engineering Department, Mechanical and Materials Engineering Division, http://keratin.swri.org/Search in Google Scholar
72 Sulzer Technical Review 2 (1998)Search in Google Scholar
73 D.Dowson, J.Fisher, Z. M.Jin, D. D.Auger, B.Jobbins: Design considerations for cushion from bearings in artificial hip joints, Proc. of the Institution of Mechanical Engineers 205 (H2), (1991), Part H, pp. 59–68Search in Google Scholar
74 D. D.Auger, D.Dowson, J.Fisher, Z. M.Jin: Friction and lubrication in cushion form bearings for artificial hip joints, Proc. of the Institution of Mechanical Engineers 207 (H1) (1993), Part H, pp. 25–33Search in Google Scholar
75 L.Caravia, D.Dowson, J.Fisher, P. H.Corkhill, B. J.Tighe: A comparison of friction in hydrogel and polyurethane materials, Journal of Material Science, Materials in Medicine4 (1993), pp. 515–52010.1007/BF00120132Search in Google Scholar
76 G.McClure, Z. M.Jin, J.Fisher, B. J.Tighe: Determination of lubricating film thickness for permeable hydrogel and non-permeable polyurethane layers bonded to a rigid substrate with particular reference to cushion form hip joint replacements, Proc. of the Institution of Mechanical Engineers 210 (1996), pp. 89–93Search in Google Scholar
77 M. J.Drews; M.LaBerge: An investigation of the fatigue induced failure modes of fiber/elastomer composites as bearing surfaces in total hip joint prosthesis, National Textile Center Annual Report (1996), http://www.ntcresearch.org/pdf-rpts/Bref0397/B97C94_2.pdfSearch in Google Scholar
78 G.H.Van Lenthe; N.Verdonschot; G.Bergmann; R.Huiskes: The effect of implant material on friction induced heating around total hip implants, in: 12th Conference of the European Society of Biomechanics, Dublin, (2000), pp. 143–145Search in Google Scholar
79 S.Suresh, A.Mortensen: Fundamental of Functionally Graded Materials, Ashgate Publicating Co., Brookfield, (2000), http://ninas.mit.edu/lexcom/www/FGM.htmlSearch in Google Scholar
80 http://www.den.hokudai.ac.jp/rikou/topics-e.htmlSearch in Google Scholar
81 R.Miyao, A.Yokoyama, F.Watari, T.Kawasaki: Properties of Titanium/Hydroxyapatite functionally graded implants by spark plasma sintering and their biocompatibility, J. Dent. Mat.20 (2001), No. 6, pp. 344–355Search in Google Scholar
82 G. Y.Kim, E.Saiz, S.Fujino, J. M.Gomez-Vega, G. W.Marshall, S. J.Marshall, A.P.Tomsia: 3864 Functionally graded coatings for metallic implants, Materials & Mechanical Properties, San Diego (2002), http://iadr.confex.com/iadr/2002SanDiego/techprogram/session_2027.htmSearch in Google Scholar
83 H. S.Hedia, M.Nemat-Alla: Design optimization of functionally graded dental implant, Biomed Mater Eng14 (2004), pp. 133–143Search in Google Scholar
84 Hedia, H.S. “Design of Functionally Graded Dental Implant in the Presence of Cancellous Bone” J Biomed Mater Res Part B: Appl Biomater, Vol. 75B, (2005), pp. 74–80, An International Journal, USA10.1002/jbm.b.30275Search in Google Scholar PubMed
85 H.S.Hedia: Effect of Coating thickness and its Material on the Stress distribution for Dental Implant, in: Journal of Medical Engineering & Technology, Vol. 31, No. 4, (July 2007), pp. 280–287, An International Journal, UK.10.1080/03091900600861616Search in Google Scholar PubMed
86 H. S.Hedia, M. A. N.Shabara, T. T.El Midany, N.Fouda: A method of material optimization of cementless stem through functionally graded material, Int. J. Mech. Mater Des.1 (2005), pp. 329–34610.1007/s10999-005-3307-4Search in Google Scholar
87 M.Nematt-Alla: Reduction of thermal stresses by developing two-dimensional functionally graded materials, Int. J. Solids Struct.40 (2003), pp. 7339–735610.1016/j.ijsolstr.2003.08.017Search in Google Scholar
88 http://www.mtm.kuleuven.ac.be/Research/C2/overview_of_materials_under_investi gation/index.html Apper at 2010-06-29.Search in Google Scholar
89 B.Vamsi Krishna, S.Bose, A.Bandyopadhyay: Low stiffness porous Ti structures for load-bearing implants was investigated, Acta Biomaterialia3 (2007), No. 6, pp. 997–100610.1016/j.actbio.2007.03.008Search in Google Scholar PubMed
90 A.Muthutantri, J.Huang, M.Edirisinghe: Novel preparation of graded porous structures for medical engineering was investigated, J. R. Soc. Interface5 (2008), pp. 1459–146710.1098/rsif.2008.0092Search in Google Scholar PubMed PubMed Central
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Leichtbaupotenzial zyklisch belasteter Laserstrahl-Hybridschweißverbindungen aus S1100QL
- Bio-Medical Materials in Human Joint Implants — A Review
- Optimization of Compression Moulding Temperature for Polypropylene Materials
- Korrelation der Ermüdungsschädigung mit der Materialdämpfung in einer Aluminium-Gusslegierung
- Evaluating Waste Marble Dust as Floor Tile
- Production of Open Cell Aluminium Metal Foam with Lost Foam Technique
- Fabrication and Aging Behaviour of In-Situ Aluminum Composites
- Cleaning Sea Water from Petroleum Products by Using Rubber Powder
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Leichtbaupotenzial zyklisch belasteter Laserstrahl-Hybridschweißverbindungen aus S1100QL
- Bio-Medical Materials in Human Joint Implants — A Review
- Optimization of Compression Moulding Temperature for Polypropylene Materials
- Korrelation der Ermüdungsschädigung mit der Materialdämpfung in einer Aluminium-Gusslegierung
- Evaluating Waste Marble Dust as Floor Tile
- Production of Open Cell Aluminium Metal Foam with Lost Foam Technique
- Fabrication and Aging Behaviour of In-Situ Aluminum Composites
- Cleaning Sea Water from Petroleum Products by Using Rubber Powder
- Vorschau/Preview
- Vorschau