Home Residual Stress Relaxation and Surface Hardness of a 2024-t351 Aluminium Alloy
Article
Licensed
Unlicensed Requires Authentication

Residual Stress Relaxation and Surface Hardness of a 2024-t351 Aluminium Alloy

  • Omar Suliman Zaroog , Aidy Ali , B. B. Sahari and Rizal Zahari
Published/Copyright: May 28, 2013
Become an author with De Gruyter Brill

Abstract

For design it is generally important to consider the residual stress relaxation. In the study for this contribution, 2024 T351 Aluminium alloy specimens were shot peened at three different shot peening intensities, followed by fatigue tests for two loads. Fatigue tests were divided into two stages. The residual stresses and micro-hardness were measured at initial and after each cyclic load for the three shot peening intensities and the two aforementioned sets of loads. The results showed that the residual stresses and micro-hardness of the specimens were decreased. Moreover, the relaxation depended on the fatigue load amplitude. Residual stress relaxation reached 54% of the initial residual stress while the micro-hardness relaxation reached 39% of the initial micro-hardness. Most of the residual stress relaxation occurred during the first cycle. The relaxation of the initial residual stress is severe when there is low shot peening intensity and high applied load, and the reduction of the micro-hardness is depending on the residual stress relaxation.

Kurzfassung

Für die Auslegung von Bauteilen ist generell die Reduktion von Eigenspannungen zu berücksichtigen. In der diesem Beitrag zugrunde liegenden Studie wurden Proben der Aluminiumlegierung 2024 T351 mit zwei verschiedenen Intensitäten kugelgestrahlt und nachfolgend bei zwei Belastungen Ermüdungsversuchen unterzogen. Die Ermüdungsversuche wurden in zwei Stadien unterteilt. Die Eigenspannungen und die Mikrohärte wurden dabei zu Beginn und nach jeder zyklischen Beanspruchung für die beiden Intensitäten des Kugelstrahlens und den entsprechenden Beanspruchungen gemessen. Die Ergebnisse zeigten, dass sich die Eigenspannungen und die Mikrohärte der Proben vermindern ließen und dass darüber hinaus die Relaxation von der Belastungsamplitude abhing. Die Spannungsrelaxation betrug 54% des ursprünglichen Wertes, die Mikrohärte konnte auf 3 % des Ausgangswertes herabgesetzt werden. Der größte Spannungsabbau fand während des ersten Belastungszykluś statt. Die Herabsetzung der Ausgangsspannungen findet getrennt statt, wenn die Kugelstrahlintensität niedrig und die Beanspruchung hoch ist. Dabei ist die Reduzierung der Mikrohärte von der Herabsetzung der Eigenspannungen abhängig.


Omar Suliman Zaroog finished his Bachelor degree at Khartoum University, in mechanical engineering. His master degree was in manufacturing engineering system from University Putra, Malaysia, his professional experience in fatigue, and fracture. Now he is PhD student at Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University Putra, Malaysia.


References

1 ASM Metal Handbook 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Ohio (1993)Search in Google Scholar

2 I. J.Polmear: Light Alloys: Metallurgy of Light Metals, Halsted Press, London (1996)Search in Google Scholar

3 W. S.Miller, L.Zhuang, J.Bottema, A. J.Wittebrood, P.De Smet, A.Haszler, A.Vieregge: Recent development in Aluminium alloys for the automotive industry, Mater Sci Eng A280 (2000), No. 1, pp. 374910.1016/S0921-5093(99)00653-XSearch in Google Scholar

4 H.Sigwart, Proc. of the Intern. Conf. on Fatigue of Metals, Institution of Mechanical Engineers, London (1957)Search in Google Scholar

5 L.Wagner: Mechanical surface treatments on Titanium, Aluminium and Magnesium alloys, Mater Sci Eng A.263 (1999), No. 2, pp. 21021610.1016/S0921-5093(98)01168-XSearch in Google Scholar

6 P.Juijerm, U.Noster, I.Altenberger, B.Scholtes: Fatigue of deep rolled AlMg4.5Mn (AA5083) in the temperature range 20–300 °C, Mater Sci Eng A.379 (2004), pp. 28629210.1016/j.msea.2004.02.022Search in Google Scholar

7 P.Juijerm, I.Altenberger, U.Noster, B.Scholtes: Residual stress relaxation and cyclic deformation behavior of deep rolled AlMg4.5Mn (AA5083) at elevated temperatures, Mater Sci Forum.490-491 (2005), pp. 43644110.4028/www.scientific.net/MSF.490-491.436Search in Google Scholar

8 AidyAli, M. W.Brown, C. A.Rodopoulos, S.Gardiner: Characterization of friction stir welding 2024-T351 Aluminium Alloy, J Fail Anal Prev.6 (2007), No. 4, pp. 839610.1361/154770206X117559Search in Google Scholar

9 AidyAli, M. W.Brown, S.Gardiner, FEIIC Seminar on Engineering and Technology SET 2006, Putrajaya, Malaysia, (2006), pp. 363373Search in Google Scholar

10 E. R.De Los Rios, A.Walley, M. T.Milan, G.Hammersley: Fatigue Crack initiation and propagation on shot-peened surfaces in A316 stainless steel, Int J Fatigue17 (1995), pp. 49349910.1016/0142-1123(95)00044-TSearch in Google Scholar

11 C. P.Diepart: Modeling of shot peening residual stresses practical applications, Mater Sci Forum, 163-165 (1994), pp. 45746410.4028/www.scientific.net/MSF.163-165.457Search in Google Scholar

12 A. T.Ozdemir, L.Edwards: Relaxation of residual stresses at cold worked fastener holes due to fatigue loading, Fatigue Fract Eng Mater Struct.20 (1997), pp. 1443145110.1111/j.1460-2695.1997.tb01501.xSearch in Google Scholar

13 Holzapfel, V. Schulze, O.Vöhringer, E.Macherauch: Residual stress relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures, Mater Sci Eng A.248 (1998), pp. 91810.1016/S0921-5093(98)00522-XSearch in Google Scholar

14 O.Vöhringer: Relaxation of Residual Stresses by Annealing or Mechanical Treatment, A. Niku-Lari (Ed.): Advances in Surface Treatments Technology, Applications, Effects: Residual Stresses, Pergamon Press, New York (1987), pp. 36739610.1016/B978-0-08-034062-3.50027-6Search in Google Scholar

15 H.Hanagarth, O.Vöhringer, E.Macherauch: Proceedings of 4th international conference shot peening, The Japan Society of Precision Engineering, Tokyo, (1990), pp. 337345Search in Google Scholar

16 S.Kodama: Proceedings of the international conference Mechanical Behavior of Metals II, Society of Material Science, Kyoto (1972), pp. 111118Search in Google Scholar

17 M. A. S.Torres, H. J. C.Voorwald: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel, Int J Fatigue.8 (2002), pp. 87788610.1016/S0142-1123(01)00205-5Search in Google Scholar

18 M.Khadhraoui, W.Cao, L.Castex, J. Y.Guédou: Experimental investigations and modelling of relaxation behaviour of shot peening residual stresses at high temperature for nickel base superalloys, Mater Sci Technol.4 (1997), pp. 36036710.1179/026708397790302359Search in Google Scholar

19 W. Z.Zhuang, G. R.Halford: Investigation of residual stress relaxation under cyclic load, Int J Fatigue23 (2001), pp. 313710.1016/S0142-1123(01)00132-3Search in Google Scholar

20 M. R.James, E.Kula, V.Weiss (Eds.): Proc. of the 28th Army Materials Research Conference, Plenum Press, New York (1982), pp. 297314Search in Google Scholar

21 J.Morrow, G. M.Sinclair, Symposium on Basic Mechanisms of Fatigue, ASTM STP 237, Philadelphia (1958)Search in Google Scholar

22 H. R.Jhansale, T. H.Topper, Cyclic Stress-Strain Behavior – Analysis, Experimentation and Failure Prediction, ASTM STP 519, Philadelphia (1973), pp. 246270Search in Google Scholar

23 K.Iida, S.Yamamoto, M.Takanashi: Residual stress relaxation by reversed loading, Weld in the World93 (1997), No. 3, pp. 138144Search in Google Scholar

24 R. L.Mattson, W. S.Coleman, jr.: Effect of shot peening variables and residual stresses on fatigue life of leaf spring specimens, Trans Soc Automot Eng, 62 (1954), pp. 546556Search in Google Scholar

25 O. S.Zaroog, AidyAli, B. B.Sahari, R.Zahari: Modelling of residual stress relaxation: A review, Pertanika J Sci & Technol.17 (2009), No. 2, pp. 211218Search in Google Scholar

26 O. S.Zaroog, AidyAli, B. B.Sahari, R.Zahari: Relaxation of residual stress – Part 1: Relaxation of Stage 1, Journal of Scientific and Industrial Research68 (2009), pp. 10351037Search in Google Scholar

27 O. S.Zaroog, AidyAli, B. B.Sahari, R.Zahari: Relaxation of residual stress – Part 2: Relaxation of Stage 2, American J of Engineering and Applied Sciences2 (2009), No. 4, pp. 75976310.3844/ajeassp.2009.759.763Search in Google Scholar

28 Airbus Industry Test Method Standard AITM 1-0011: Constant amplitude fatigue testing of metallic materials, Airbus Industry, Blagnac cedex (2001)Search in Google Scholar

29 ASTM Standard E3-2001: Standard method of preparation of metallographic speciments, Annual Book of ASTM Standards 03.01, Philadelphia (1983)Search in Google Scholar

30 ASTM Standard E384-99: Standard test method for micro-hardness of material, Annual Book of ASTM Standards 03.01, Philadelphia (2003)Search in Google Scholar

31 SAE Standard HS-784: Residual Stress Measurement by X-Ray Diffraction, SAE International, Warrendale (2003)Search in Google Scholar

32 ASTM Standard E1426-98: Standard test method for determining the effective elastic parameter for X-Ray diffraction measurements of residual stress, Annual Book of ASTM Standards 03.01, Philadelphia (2003)Search in Google Scholar

33 J. L.Snoek: Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron, Physica.8 (1941), pp. 71173310.1016/S0031-8914(41)90517-7Search in Google Scholar

Published Online: 2013-05-28
Published in Print: 2010-09-01

© 2010, Carl Hanser Verlag, München

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110171/pdf
Scroll to top button