Home Optimal Material Distribution of a Micro-Gripper Manipulator with Straight-Line Path and Parallel Movements
Article
Licensed
Unlicensed Requires Authentication

Optimal Material Distribution of a Micro-Gripper Manipulator with Straight-Line Path and Parallel Movements

  • Mahmoud Helal , Lining Sun and Liguo Chen
Published/Copyright: May 28, 2013
Become an author with De Gruyter Brill

Abstract

Micro electro-mechanical systems (MEMS) are miniaturized devices that consist of both mechanical and electrical parts. Compliant mechanisms have made an enormous contribution in the design process of various fields such as adaptive structures, hand-held tools, components in transportations, electronics and medical tools. The use of compliant mechanisms will help in reducing the number of components, as a result decreasing manufacturing cost and increasing the performance. The topology optimization methods search for an ideal material distribution of a structure. In this investigation, a new two-dimensional micro-grippers compliant mechanism, which can realize a straight-line path and parallel movement arms, are developed. Material models, which parameterize stiffness and density properties, are implemented based on the well-known solid isotropic materials with penalization model. Optimality criteria method is applied as the optimization algorithm using the ANSYS package. The micro-grippers with compliant mechanism can be applied to targets with a diameter of up to 400 μm.

Kurzfassung

Mikroelektromechanische Systeme (MEMS) sind miniaturisierte Einrichtungen, die sowohl aus Mechanismen als auch aus elektrischen Teilen bestehen. Compliant-Mechanismen haben einen großen Beitrag im Gestaltungsprozess verschiedener Felder, wie zum Beispiel bei adaptiven Strukturen, Handwerkzeugen, Transportkomponenten, elektronischen und medizinischen Werkzeugen. Die Verwendung von Compliant-Mechanismen wird insgesamt dazu führen, die Zahl der Komponenten zu reduzieren, und somit die Herstellungskosten zu senken und die Performanz von Bauteilen zu erhöhen. Die Verfahren zur Topologie-Optimierung verfolgen das Ziel einer idealen Materialverteilung in einer Struktur. In der zugrunde liegenden Untersuchung wurde ein neuer zweidimensionaler Compliant-Mechanismus für einen Mikrogreifer entwickelt, der einen Arm für einen Geradeaus-Pfad und für Parallel-Bewegungen realisieren kann. Die Materialmodelle, die sowohl Steifigkeitsals auch Dichteeigenschaften parametrisieren können, wurden basierend auf den bekannten isotropen festen Materialien mit Penalization-Modell implementiert. Unter Verwendung des Programmes ANSYS wurde das Optimierungskriterienverfahren als Optmierungsalgorithmus eingesetzt. Die Mikrogreifer mit dem Compliant-Mechanismus können auf Ziele mit einem Durchmesser von bis zu 400μm angewendet werden.


Assistant Lecturer Mahmoud M. K. Helal, born in 1978, studied Mechanical Engineering at the Production Engineering and Mechanical Design Department at Mansoura University from 1995 to 2000. In 2005, he achieved his Master degree. He works as an assistant lecture in the Production Engineering and Mechanical Design Department at Mansoura University.

Professor Lining Sun graduated with the Bachelor and Master degree in Mechanical Engineering at the Harbin Institute of Technology in 1985 and 1988, and completed the Ph.D. degree in Mechatronics Engineering in 1993. His research interests have encompassed a number of related areas, including robot control, design of actuators, design and control of high speed machines, MEMS 3D assembly, MEMS robotic task execution, micromanipulation robot, etc. He has published extensively in journals and conferences and has supervised over 50 MSc and Ph.D. students as well as a number of Post-Doctoral Fellows and Research Engineers in these various research areas.

Associate Professor Liguo Chen received his Bachelor and Master Degrees in Mechanical Engineering at the Harbin Institute of Science and Technology in 1997 and 2000. He received his Ph.D. degree in Mechatronics from the Harbin Institute of Technology in 2003. Since 2003, he has been with the Robotics Institute at the Harbin Institute of Technology, and is now an Associate Professor. Dr. Chen's research interests lie in robotics and automation, computer vision, MEMS 3D assembly, and micromanipulation robot.


References

1 L. L.Howell: Compliant Mechanisms, John Wiley & Sons, New York (2001)10.1002/9781118516485Search in Google Scholar

2 L. L.Howell, A.Midha: A loop-closer theory for the analysis and synthesis of compliant mechanisms, Journal of Mechanical Design, 118 (1996), pp. 12112510.1115/1.2826842Search in Google Scholar

3 G. K.Ananthasuresh, S.Kota, Y.Gianchandani: A methodical approach to the design of compliant micromechanisms, Proc. of the Solid-State Sensor, Actuator Workshop, South Carolina (1994), pp. 1316Search in Google Scholar

4 M. I.Frecker, G. K.Ananthasuresh, S.Nishiwaki, N.Kikuchi, S.Kota: Topological synthesis of compliant mechanisms using multi-criteria optimization, Journal of Mechanical Design, 119 (1997), pp. 23824510.1115/1.2826242Search in Google Scholar

5 U.Larsen, O.Sigmund, S.Bouwstra: Design and fabrication of compliant micro-mechanisms and structures with negative Poisson's ratio, Journal of Microelectromechanical Systems, 6 (1997), pp. 99106Search in Google Scholar

6 C. H.Shyh, M. L.Chi, C. C.Chien, L. C.Wei: Topology optimal compliant mechanism, JSME International Journal, Series A49 (2006), No. 2006, pp. •••-•••Search in Google Scholar

7 M.Bendsoe, O.Sigmund: Topology optimization: theory, methods and applications, Springer (2004)10.1007/978-3-662-05086-6Search in Google Scholar

8 O.Sigmund: On the design of compliant mechanisms using topology optimization, Mech. Struct. and Mach.25 (1997), No. 4, pp. 49352410.1080/08905459708945415Search in Google Scholar

9 S.Nishiwaki, M. I.Frecker, S.Min, N.Kikuchi: Topology optimization of compliant mechanisms using the homogenization method, Int. J. Numer. Meth. Eng.42 (1998), pp. 535559Search in Google Scholar

10 C. B. W.Pedersen, T.Buhl, O.Sigmund: Topology synthesis of large-displacement compliant mechanisms, Int J Numer. Meth. Eng.50 (2001), pp. 2683270510.1002/nme.148Search in Google Scholar

11 Y. S.Oh, W. H.Lee, H. E.Stephanow, G. D.Skidmore: Design, optimization, and experiments of compliant micro gripper, Proceedings of ASME International Mechanical Engineering Congress, Washinton D. C. (2003), pp. 152110.1145/2103380.2103447Search in Google Scholar

12 G. H.Yoon, Y. Y.Kim, M.Bendsoe, O.Sigmund: Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage, Struct. Multidisc Optim, 27 (2004), pp. 13915010.1007/s00158-004-0378-zSearch in Google Scholar

13 G. K.Annanchasuresh: Optimal Synthesis Methods for MEMS, Kluwer Academic Publishers (2003)10.1007/978-1-4615-0487-0Search in Google Scholar

14 ANSYS Inc.: Theory Reference Release 11.0 (2007)10.1016/S1365-6937(07)70149-1Search in Google Scholar

15 M.Erdogan, G.Ibrahim: The finite element method and applications in engineering using ANSYS, Springer (2006)Search in Google Scholar

16 SU-8 Photoresists Formulations 50–100 Datasheets, (Microchem Corp. (2000) http://www.microchem.com)Search in Google Scholar

17 G. K.Ananthasuresh, S.Kota, N.Kikuchi: Strategies for systematic synthesis of compliant MEMS, Proc. ASME Winter Annual Meeting, Symposium on MEMS, Dynamics Systems and Control, DSC Vol. 55-2, Chicago (1994), pp. 677686Search in Google Scholar

Published Online: 2013-05-28
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110095/pdf
Scroll to top button