Startseite Multiaxial mixed-mode cracking – small crack initiation and propagation*
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiaxial mixed-mode cracking – small crack initiation and propagation*

  • Manuel de Freitas , Luis Reis und Bin Li
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Both the fatigue crack path and fatigue life of CK45 steel and 42CrMo4 steel under various multiaxial loading paths are studied in this paper. The replica method was applied to monitor the crack initiation and small crack growth, the fractographic analyses were carried out on the fracture surface and the crack initiation angle was measured. The effects of non-proportional loading on both the crack path and fatigue life were studied, and the flattening of asperities on the crack surface due to compressive normal stress was also observed. An improved model is proposed based on correcting the strain range parameter of the ASME code approach, taking into account the additional hardening caused by the non-proportional loading path, which can improve the predictions of the fatigue lives for various non-proportional loading paths and provide an easy way to overcome the drawbacks of the current ASME code approach for non-proportional fatigue. Based on these corrected strain range parameters, a strain intensity factor range is used to correlate with the experimental results of small crack growth rates. It is concluded that the orientation of the early crack growth can be predicted well by the critical damage plane, but the fatigue life can not be predicted accurately using only the parameters on the critical plane, since the damage on all the planes contributes to fatigue damage as stated by the integral approaches.

Kurzfassung

Für den vorliegenden Beitrag wurden sowohl der Ermüdungsrisspfad als auch die Lebensdauer der Stähle CK45 und 42CrMo4 unter verschiedenen multiaxialen Belastungsrichtungen untersucht. Es wurde das Verfahren von Replica angewendet, um die Rissinitiierung und das Wachstum kleiner Risse aufzuzeigen. Es wurde eine fraktographische Analyse der Bruchoberfläche vorgenommen und es wurde der Risswinkel während der Initiierung gemessen. Es wurden die Auswirkungen der nichtproportionalen Beanspruchungen auf den Risspfad sowie auf die Lebensdauer untersucht und es wurde außerdem eine Abflachung der rauhen und unebenen Oberfläche infolge der Druckspannungen in Normalrichtung beobachtet. Es wird ein verbessertes Modell gezeigt, dass auf korrigierten Dehnungsparametern nach dem ASME Code beruht und das zusätzliche Verfestigung infolge der nicht proportionalen Beanspruchungsrichtung berücksichtigt. Das Modell kann somit Lebensdauervorhersagen bei verschiedenen nicht proportionalen Beanspruchungsrichtungen verbessern und stellt damit einen einfachen Weg dar, um die Schwächen des bisherigen Ansatzes nach dem ASME Code für nicht proportionale Ermüdung zu überwinden. Basierend auf den so korrigierten Dehnungsparametern wurde ein Bereich des Spannungsintensitätsfaktors verwendet, um die experimentellen Ergebnisse für geringe Risswachstumsraten zu korrelieren. Damit kann die Orientierung des Risses während eines frühen Wachstumsstadiums sehr gut mit der kritischen Schädigungsebene exakt vorhergesagt werden. Die Lebensdauer hingegen kann nicht akkurat vorhergesagt, wenn nur die Parameter der kritischen Ebene herangezogen werden, da entsprechend der Aussage der Integralansätze schließlich die Schädigungen in allen Ebenen zum gesamten Ermüdungsschaden beitragen.


Dr. Bin Li, Ph. D. in Mechanical Engineering from Technical University of Lisbon, Portugal, M. S. and B. S. in Mechanical and Aeronautical Engineering from Northwestern Polytechnic University, Xián, China. Presently Research Fellow at ICEMS (Institute of Material and Surface Science and Engineering, Portugal), and Assistant Professorat ISEL (Lisbon Institute of Engineering). Main research areas: Multiaxial Fatigue, FEM based simulation of structural integrity, Structural Optimization.

Professor Manual de Freitas, Diploma in Mechanical Engineering from Instituto Superior Técnico, Technical University Lisbon, Doctor in Mechanical Engineering, from Université de Technologie de Compiégne, France. Presently Full Professor of Mechanical Design at the Mechanical Engineering Department of Instituto Superior Técnico, Technical University of Lisabon, Researcher at ICEMS (Institute of Material and Surface Science and Engineering, Lisbon, Portugal). Main research areas: multiaxial fatigue, mixed-mode crack growth, mixed-mode fracture of laminated composites.

Dr. Luis Reis, Ph. D. in Mechanical Engineering from Technical University of Lisbon, Portugal. Currently Research Fellowat ICEMS (Institute of Material and Surface Science and Engineering, Portugal) and Assistant Professor at IST (Instituto Superior Técnico), Technical University of Lisbon. Main research areas: Mechanical Design, Multiaxial Fatigue, Fractographic studies, FEM-based simulation of structural integrity.

*

Contribution to the 7th International Conference on Biaxial/Multiaxial Fatigue and Fracture (7ICBMFF)


References

1 Socie, D.; Marquis, G.: Multiaxial Fatigue, Society of Automotive Engineers, Warrendale (2000), PA 15096-000110.4271/R-234Suche in Google Scholar

2 Miller, K.: The short crack problem, Fatig. of Eng. Mat. Struct.5 (1982), No. 3, pp. 223232.10.1111/j.1460-2695.1982.tb01250.xSuche in Google Scholar

3 Newman, J. C.; Edwards, P. R.: Short Crack Behaviour in Aluminium Alloy – an AGARD Cooperative Test Programme, AGARD Report No.732 (1988)Suche in Google Scholar

4 Carvalho, M. H.; de Freitas, M.: Short crack behaviour in aluminium alloy 2090, AGARD Report No.767 (1990), pp. 3.13.17Suche in Google Scholar

5 Park, J.; Nelson, D.; Rostami, A.: Small crack growth in combined bending-torsion fatigue of A533B steel, Fatigue Fract. Engng Mater Struct, 24 (2001), pp. 17919110.1046/j.1460-2695.2001.00386.xSuche in Google Scholar

6 McDowell, D. L.; Bennett, V. P.: A microcrack growth law for multiaxial fatigue, Fatigue Fract. Engng Mater Struct.19 (1996), No. 7, pp. 82183710.1111/j.1460-2695.1996.tb01019.xSuche in Google Scholar

7 Reddy, S. C.; Fatemi, A.: Small crack growth in multiaxial fatigue, Advances in Fatigue Lifetime Predictive Techniques, ASTM STP 1122, Mitchell, M. R. and Landgraf, R. W. (Eds.), American Society for Testing and Materials, Philadelphia (1992), pp. 27629810.1520/STP24164SSuche in Google Scholar

8 Brown, M. W.; Miller, K. J.: A theory for fatigue failure under multiaxial stress-strain conditions, Proc. Inst. Mech. Engrs, 187 (1973), No. 65, pp. 74555Suche in Google Scholar

9 Findley, W. N.: A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Trans ASME J. Eng. Ind.81 (1959), pp. 301306Suche in Google Scholar

10 McDiarmid, D. L.: A shear stress based critical-plane criterion of multiaxial fatigue failure for design and life prediction, Fat. Fract. Eng. Mat. Struct.17 (1994), No. 12, pp. 14758410.1111/j.1460-2695.1994.tb00789.xSuche in Google Scholar

11 Smith, R. N.; Watson, P.; Topper, T. H.: A stress strain function for the fatigue of metal, J. Materials5 (1970), No. 4, pp. 76778Suche in Google Scholar

12 Fatemi, A.; Socie, D.: A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract. Eng. Mater. Struct.11 (1988), No. 3, pp. 1496510.1111/j.1460-2695.1988.tb01169.xSuche in Google Scholar

13 Zenner, H.; Simburger, A.; Liu, J.: On the fatigue limit of ductile metals under complex multiaxial loading, Int. J. Fatigue22 (2000), pp. 13714510.1016/S0142-1123(99)00107-3Suche in Google Scholar

14 Liu, J.: Weakest link theory and multiaxial criteria, Proceedings of 5th Int. Conf. Biaxial/Multiaxial Fatigue, Cracow, Poland (1997), pp. 4562Suche in Google Scholar

15 Papadopoulos, I. V.: A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress conditions, Fatigue Fract. Eng. Mater. Struct.18 (1995), No. 1, pp. 799110.1111/j.1460-2695.1995.tb00143.xSuche in Google Scholar

16 Liu, J.; Zenner, H.: Berechnung der dauerschwingfestigkeit bei mehrachsiger Beanspruchung, Mat-wiss u Werkstofftechn.24 (s) (1993), pp. 24030310.1002/mawe.19930240706Suche in Google Scholar

17 ASME Code Case N-47-23 (1988) Case of ASME Boiler and Pressure Vessel Code, American Society of Mechanical EngineersSuche in Google Scholar

18 Itoh, T.; Miyazaki, T.: A damage model for estimating low cycle fatigue lives under non-proportional multiaxial loading, Proceedings of the 6th International Conference on Biaxial/Multiaxial Fatigue & Fracture, M.de Freitas (Ed.), Lisbon (2001), pp. 503510Suche in Google Scholar

19 de Freitas, M.; Li, B.; Santos, J. L. T.: A numerical approach for high-cycle fatigue life prediction with multiaxial loading, Kaluri, S.; Bonacuse, P. J. (Eds.), Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, American Society for Testing and Materials, West Conshohocken, (2000), pp. 13915610.1520/STP13502SSuche in Google Scholar

20 Hua, C. T.: Fatigue damage and small crack growth during biaxial loading, Ph. D. Thesis, Dept. of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign (1984)Suche in Google Scholar

21 Irwin, G. R.: Fracture mechanics applied to adhesive systems, Patrik, R. L. (Ed.): Treatise on Adhesion and Adhesives, Vol. 1, Marcel Dekker, New York (1967), pp. 233267Suche in Google Scholar

22 Varvani-Farahani, A.; Topper, T. H.: A new energy-based multiaxial parameter part 2: biaxial fatigue crack growth rate and life prediction of SAE 1045 steel specimens subjected to various biaxial strain ratios, Proceedings of the 4th International Conference of the Engineering Integrity Society, Cambridge, UK (2000), pp. 323332Suche in Google Scholar

23 Reis, L.; Li, B.; Leite, M.; de Freitas, M.: Effects of non-proportional loading paths on the orientation of fatigue crack path, Fatigue Fract. Engng Mater Struct., 28 (2005), No. 5, pp. 44545410.1111/j.1460-2695.2005.00882.xSuche in Google Scholar

24 Reis, L.; Li, B.; de Freitas, M.: Biaxial low-cycle fatigue for proportional and non-proportional loading paths, Proceedings of the 5th International Conference on Low-Cycle Fatigue, Berlin (2003), pp. 265270Suche in Google Scholar

25 Chen, X.; Gao, Q.; Sun, X. F.: Low-cycle fatigue under non-proportional loading, Fatigue Fract. Engng Mater Struct.19 (1996), No. 7, pp. 83985410.1111/j.1460-2695.1996.tb01020.xSuche in Google Scholar

Published Online: 2013-05-28
Published in Print: 2006-02-01

© 2006, Carl Hanser Verlag, München

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.100710/pdf
Button zum nach oben scrollen