Startseite Challenges in developing a general constitutive relation for cyclic loading*
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Challenges in developing a general constitutive relation for cyclic loading*

  • Fernand Ellyin und Zihui Xia
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Deformation of most metals and alloys is time-dependent and this dependency becomes more pronounced at temperatures exceeding a third of the material's melting point. Furthermore, the deformation response of a material to cyclic loading involves transients prior to stabilization. Some manifestations of the transient responses are: strain hardening or softening, loading sequence effect, strain-rate and strain-path history dependency, creep-plasticity interaction, strain ratcheting, among others. In addition, a constitutive model formulated in terms of macroscopic parameters must have a certain underlying microscopic rationalization. In this paper rate-dependent constitutive relations for an inelastic material are presented. This constitutive model is of a coupled nature, in the sense that the effect of prior creep on the subsequent plastic deformation and vice versa, are taken into account. Thus, the framework for these constitutive relations is based on the concept that any loading sequence can be predicted by two separate (elastoplastic and creep) but coupled models. A number of examples covering a wide range of cyclic loading types are presented.

Kurzfassung

Die Verformung der meisten Metalle und ihrer Legierungen ist zeitabhängig und diese Abhängigkeit wird umso deutlicher bei Temperaturen, die ein Drittel des Schmelzpunktes des jeweiligen Werkstoffes überschreiten. Darüber hinaus weist die Verformung eines Werkstoffes infolge einer zyklischen Beanspruchung Transienten vor der Stabilisierung auf. Einige Ursachen für diese Transienten sind unter anderen Verfestigungs- oder Entfestigungseffekte (bekannt als strain hardening oder softening), Effekte der Belastungsfolge, Abhängigkeiten von der Dehnrate oder der Verformungshistorie oder Interaktionen zwischen Kriechen und Plastifizierung. Ein konstitutives Modell, das mittels makroskopischer Parameter formuliert wird, muss weiterhin mit einer bestimmten mikroskopischen Überlegung unterlegt sein. Im vorliegenden Beitrag werden geschwindigkeitsabhängige konstitutive Beziehungen für ein inelastisches Material abgeleitet. Dieses constitutive Modell hat einen gekoppelten Aufbau in dem Sinn, dass die Wirkung vorherigen Kriechens auf die nachfolgende plastische Verformung und umgekehrt berücksichtigt wird. Somit basiert das Rahmenwerk für diese konstitutiven Beziehungen auf dem Konzept, dass alle Belastungsfolgen durch zwei separate (elastoplastische Verformung und Kriechen), aber gekoppelte Modelle vorhergesagt werden können. Eine Anzahl von Beispielen, die ein weites Feld zyklischer Beanspruchungsarten abdeckt, wird außerdem präsentiert.


Professor Fernand Ellyin's current research activities are the investigation of micro and macro behaviour of composite systems using extensive and unique experimental and numerical techniques. Two primary categories of materials being studied are: (1) Polymers and Fiber Reinforced Polymer Composites, (2) Metals and Metal Matrix Composites. Professor Ellyin was the NOVA (TCPL)/NSERC Senior Industrial Research Chair holder from 1996– 2003 and prior to that Professor of Mechanical engineering since 1981. He is now Professor Emeritus at the University of Alberta and Adjunct professor at the University of British Columbia. In recognition of his contributions, Professor Ellyin has been awarded the McCalla and Killam professorships by the University of Alberta, the Robert Angus Medal, and George H. Duggan Medal by the Canadian Society for Mechanical Engineering and senior fellowships by the Japan Society for the Promotion of Science and SFB Germany, among others. He was made an Honorary Fellow of the DVM, in 2004. He is the author of two books, five book chapters, more than 300 papers, and has edited 5 volumes of proceedings and participated in the writing of five volumes of standards for the Candu Nuclear Power Plants.

Dr. Zihui Xia graduated from Department of Engineering Mechanics, Tsinghua University, Beijing, China and obtained Master and Ph. D. Degrees there in 1981 and 1984, respectively. He worked in the Shanghai Ship and Shipping Research Institute as a senior Research Engineer and Vice Director from 1981–1987. In 1987 he moved to Canada and worked in the Department of Mechanical Engineering, University of Alberta as Post Doctoral Fellow, Senior Research Associate, and Assistant Professor and is currently a tenured Associate Professor. In recent years, his research has been focused on advanced composite materials. He has published more than 50 papers in major international journals and about 50 papers in international conference proceedings.

*

Contribution to the 7th International Conference on Biaxial/Multiaxial Fatigue and Fracture (7ICBMFF)


Literatur

1 Ellyin, F.: Fatigue Damage, Crack Growth and Life Prediction, Chapman & Hall, London, 199710.1007/978-94-009-1509-1Suche in Google Scholar

2 Xia, Z.; Ellyin, F.: Nonproportional multiaxial cyclic loading – experiments and constitutive modeling, ASME J. Appl. Mech.58 (1993), pp. 31732510.1115/1.2897188Suche in Google Scholar

3 Xia, Z.; Ellyin, F.: Biaxial ratcheting under strain or stress-controlled axial cycling with constant hoop stress, ASME J. Appl. Mech.61 (1994), pp. 42242810.1115/1.2901461Suche in Google Scholar

4 Kujawski, D.; Kallianpur, V.; Krempl, E.: Uniaxial creep, cyclic creep and relaxation of AISI type 304 stainless steel at room temperature, J. Mech. Phys. Solids28 (1980), pp. 12914810.1016/0022-5096(80)90018-6Suche in Google Scholar

5 Kawai, M.; Ohashi, Y.: Creep-plasticity interaction of Austenitic stainless steel at elevated temperature, Proc. of the International Conference on Creep, April 14–18, Tokyo JSME, (1986), pp. 459464Suche in Google Scholar

6 Inoue, T. et al.: On the plasticity-creep interaction behavior of SUS 304 Steel under combined stress state of tension and torsion, The 28th Japan Congress on Materials Research (1985), pp. 1522Suche in Google Scholar

7 Lemaitre, J. (Ed.): Handbook of Materials Behaviour Models, in 3 volumes, Academic Press, San Diego, CA, 2001Suche in Google Scholar

8 Miller, A. K.: Unified constitutive equations for creep and plasticity, Elsevier, London, 198710.1007/978-94-009-3439-9Suche in Google Scholar

9 Ellyin, F.; Xia, Z.: A rate-independent constitutive model for transient non-proportional loading, J. Mech. Phys. Solids38 (1989), pp. 719110.1016/0022-5096(87)90005-6Suche in Google Scholar

10 Ellyin, F.; Xia, Z.: A Rate-dependent inelastic constitutive model, part 1: elastic-plastic flow, ASME J. Engng. Mater. Tech.113 (1991), pp. 31432310.1115/1.2903412Suche in Google Scholar

11 Xia, Z.; Ellyin, F.: A rate-dependent inelastic constitutive model, part 2: creep deformation including prior plastic strain effects, ASME J. Engng. Mater. Tech.113 (1991), pp. 32432810.1115/1.2903413Suche in Google Scholar

12 Ellyin, F.; Xia, Z.; Sasaki, K.: Effect of rate-history on plastic deformation: experiments and constitutive modeling, Int. J. Plasticity9 (1993), pp. 95195910.1016/0749-6419(93)90060-4Suche in Google Scholar

13 Xia, Z.; Ellyin, F.: A constitutive model with capability to simulate complex multiaxial ratcheting behaviour of materials, Int. J. Plasticity13 (1997), pp. 12714210.1016/S0749-6419(97)00004-1Suche in Google Scholar

14 Pugh, C. E.: Constitutive equation for creep analysis of LMFBR components. In: Advances in design for elevated temperature environment, ASME Publ. (1975) No. G00092, pp. 115Suche in Google Scholar

15 Ohno, N.; Murakami, S.; Ueno, T.: A constitutive model of creep describing creep recovery and material softening caused by stress reversal, ASME J. Engng Mater. Tech.107 (1985), pp. 16.10.1115/1.3225766Suche in Google Scholar

16 Ellyin, F.; Xia, Z; Wu, J.: A new elastoplastic constitutive model inserted into the user-supplied model of ADINA, Computers and Structures56 (1995), pp. 28329410.1016/0045-7949(95)00021-8Suche in Google Scholar

17 Ellyin, F.; Xia, Z.: Rate-dependent constitutive modelling and micro-mechanical analysis of fibre-reinforced metal-matrix composites, J. Mech. Phys. Solids49 (2001), pp. 2543255510.1016/S0022-5096(01)00067-9Suche in Google Scholar

Published Online: 2013-05-28
Published in Print: 2006-02-01

© 2006, Carl Hanser Verlag, München

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.100705/pdf
Button zum nach oben scrollen