Home Effect of Inorganic Salt on Foam Properties of Nanoparticle and Surfactant Systems
Article
Licensed
Unlicensed Requires Authentication

Effect of Inorganic Salt on Foam Properties of Nanoparticle and Surfactant Systems

  • Yang Wang , Jian Wang , Hongwei Fan , Fenfen Du , Wenchao Zhou and Jiang Yang
Published/Copyright: September 7, 2020
Become an author with De Gruyter Brill

Abstract

We have studied the effect of NaCl and CaCl2 on phase behavior of foaming aqueous dispersions containing mixtures of silica nanoparticles (Ludox CL) and sulfobetaine (LHSB). At the evaluated ratio, the phase behavior results show that at a low CaCl2 concentration, sedimentation occurs, whereas a stable aqueous dispersion could be achieved when the CaCl2 concentration reaches to 20%. The adsorption experiments show that high concentrations of both NaCl and CaCl2 reduce the adsorption of LHSB to CL. In the CaCl2 dispersion the adsorption decreases significantly and only a few LHSB molecules can be adsorbed on the CL surface. Therefore, without the lower hydrophobicity of LHSB adsorption less CL could adsorbed at the air/water interface. The results on gas permeability show that aqueous dispersions containing mixtures of CL and LHSB show no obvious difference to aqueous systems containing only LHSB. The surface dilatation module of the LHSB and CL system in CaCl2 solution also shows a similar variation to the system with LHSB alone, which is significantly different from the system with 20% NaCl. Finally, foam flow tests in a porous medium show that compared to a 20% CaCl2 dispersion with the LHSB and CL system in 20% NaCl, a finer foam and a higher pressure difference could be achieved.

Kurzfassung

Wir haben die Wirkung von NaCl und CaCl2 auf das Phasenverhalten von schäumenden wässrigen Dispersionen untersucht, die Mischungen aus Silica-Nanopartikeln (Ludox CL) und Sulfobetain (LHSB) enthalten. Die Ergebnisse des Phasenverhaltens bei dem untersuchten Verhältnis zeigten, dass bei niedriger CaCl2-Konzentration eine Sedimentation stattfindet, wohingegen bei einer CaCl2-Konzentration von bis zu 20% eine stabile wässrige Dispersion erreicht werden konnte. Die Adsorptionsexperimente zeigen, dass hohe Konzentrationen sowohl von NaCl als auch CaCl2 die Adsorption von LHSB an CL verringern. In der CaCl2-Dispersion nimmt die Adsorption signifikant ab und nur wenige LHSB-Moleküle können an der CL-Oberfläche adsorbiert werden. Ohne die geringere Hydrophobie durch die LHSB-Adsorption könnten also weniger CL an der Luft-Wasser-Grenzfläche adsorbiert werden. Die Ergebnisse zur Gasdurchlässigkeit zeigen, dass die wässrigen Dispersionen, die Mischungen aus CL und LHSB enthalten, keinen offensichtlichen Unterschied zu wässrigen Systemen, die nur LHSB enthalten, aufweisen. Das Oberflächen-Dilatationsmodul des LHSB- und CL-Systems in CaCl2-Lösung zeigt ebenfalls eine ähnliche Variation wie das System mit LHSB allein, die sich deutlich von dem des Systems mit 20% NaCl unterscheidet. Schließlich zeigen Schaumfließversuche in einem porösen Medium, dass im Vergleich zu einer 20%-igen CaCl2-Dispersion mit dem LHSB- und CL-System in 20% NaCl ein feinerer Schaum und eine höhere Druckdifferenz erzielt werden konnte.


Correspondence address, Dr. Yang Wang, and Dr. Jian Wang, Xi'an Shiyou University No. 18, Eastern Section of Dianzi 2 Road, Xi'an, China, E-Mail Yang Wang: , E-Mail Jiang Yang:

Yang Wang, lecture of Xi'an Shiyou University

Jian Wang, postgraduate of Xi'an Shiyou University

Hongwei Fan, postgraduate of Xi'an Shiyou University

Fenfen Du, assistant engineer of oil production plant of Sinopec North China petroleum bureau

Wenchao Zhou, engineer of CNOOC EnerTech-Drilling & Production Co.

Jiang Yang, professor of Xi'an Shiyou University.


References

1. Rio, E., Drenckhan, W.; Salonen, A. and Langevin, D.: Unusually Stable Liquid Foams. Adv Colloid Interfac Sci.205 (2014) 7486. PMid:24342735; 10.1016/j.cis.2013.10.023Search in Google Scholar

2. Alargova, R. G.; Warhadpande, D. S.; Paunov, V. N. and Velev, O. D.: Foam Superstabilization by Polymer Microrods. Langmuir.20 (2004) 1037110374. PMid:15544360; 10.1021/la048647aSearch in Google Scholar

3. Binks, B. P. and Horozov, T. S.: Aqueous Foams Stabilized Solely by Silica Nanoparticles. Angew. Chem. Int. Edit, 117 (2005) 37883791. 10.1002/ange.200462470Search in Google Scholar

4. Gonzenbach, U. T.; Studart, A. R.; Tervoort, E. and Gauckler, L. J.: Ultrastable Particle Stabilized Foams. Angew. Chem. Int. Edit, 45 (2006) 35263530. PMid:16639761; 10.1002/ange.200503676Search in Google Scholar

5. Fujii, S. A.; Ryan, A. J. and Armes, S. P.: Long-range Structural Order, Moiré Patterns, and Iridescence in Latex-stabilized Foams. J. Am. Chem. Soc, 128 (2006) 78827886. PMid:16771501; 10.1021/ja060640nSearch in Google Scholar

6. Vijayaraghavan, K.; Nikolov, A. and Wasan, D.: Foam Formation and Mitigation in a Three-phase Gas–liquid–particulate System. Adv. Colloid Interfac, 123 (2006) 4961. PMid:16997269; 10.1016/j.cis.2006.07.006Search in Google Scholar

7. Binks, B. P. and Murakami, R.: Phase Inversion of Particle-stabilized Materials from Foams to Dry Water. Nat. Mater, 5 (2006) 865869. PMid:17041582; 10.1038/nmat1757Search in Google Scholar

8. Tang, F. Q.; Xiao, Z.; Tang, J. and Jiang, L.: The Effect of SiO2 Particles upon Stabilization of Foam. J. Colloid Interf Sci, 131 (1989) 498502. 10.1016/0021-9797(89)90192-6Search in Google Scholar

9. Kumagai, H.; Torikata, Y.; Yoshimura, H.; Kato, M. and Yano, T.: Estimation of the Stability of Foam Containing Hydrophobic Particles by Parameters in the Capillary Model. Agric Biol Chem, 5 (1991) 18231829. 10.1271/bbb1961.55.1823Search in Google Scholar

10. Garrett, P. R.: The Effect of Polytetrafluoroethylene Particles on the Foamability of Aqueous Surfactant Solutions. J Colloid Interf Sci, 69 (1979) 107121. 7. 10.1016/0021-9797(79)90085-Search in Google Scholar

11. Aveyard, R; Binks, B. P.; Fletcher, P. D. I.; Peck, T.G. and Rutherford, C. E.: Aspects of Aqueous Foam Stability in the Presence of Hydrocarbon Oils and Solid Particles. Adv. Colloid Interfac, 48 (1994) 93120. 10.1016/0001-8686(94)80005-7Search in Google Scholar

12. Denkov, N. D.: Mechanisms of Foam Destruction by Oil-based Antifoams. Langmuir, 20 (2004) 94639505. PMid:15491178; 10.1021/la049676oSearch in Google Scholar

13. Binks, B. P.: Particles as Surfactants-Similarities and Differences. Curr Opin Colloid In, 7 (2002) 2141. 10.1016/s1359-0294(02)00008-0Search in Google Scholar

14. Du, Z.; Bilbao-Montoya, M. P.; Binks, B. P.; Dickinson, E. D.; Ettelaie, R. and Murray, B. S.: Outstanding Stability of Particle-stabilized Bubbles. Langmuir, 19 (2003) 31063108. 10.1021/la034042nSearch in Google Scholar

15. Dickinson, E.; Ettelaie, R.; Kostakis, T. and Murray, B. S.: Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles. Langmuir, 20 (2004) 85178525. DOI: doi.org/10.1021/la048913k. PMid:15379469; 10.1021/la048913kSearch in Google Scholar

16. Horozov, T. S. and Binks, B. P.: Particle-Stabilized Emulsions: A Bilayer or a Bridging Monolayer?Angew. Chem. Int. Edit., 45 (2006) 773776. PMid:16355432; 10.1002/ange.200503131Search in Google Scholar

17. Holmberg, K.; Shah, D. O. and Schwuger, M. J.: Handbook of Applied Surface and Colloid Chemistry. John Wiley & Sons, 2002.Search in Google Scholar

18. Shibata, J. A and Fuerstenau, D. W.: Flocculation and Flotation Characteristics of Fine Hematite with Sodium Oleate. Int J Miner Process, 72 (2003) 2532. 10.1016/s0301-7516(03)00085-1Search in Google Scholar

19. Healy, T. W.; Somasundaran, P. and Fuerstenau, D. W.: The Adsorption of Alkyl and Alkylbenzene Sulfonates at Mineral Oxide-Water Interfaces. Int J Miner Process, 72 (2003) 310. 10.1016/s0301-7516(03)00083-8Search in Google Scholar

20. Fuerstenau, D. W. and Colic, M.: Self-association and Reverse Hemimicelle Formation at Solid–water Interfaces in Dilute Surfactant Solutions. Colloids Surf A, 146 (1999) 3347. 10.1016/s0927-7757(98)00795-xSearch in Google Scholar

21. Lu, S. and Song, S.: Hydrophobic Interaction in Flocculation and Flotation 1. Hydrophobic Flocculation of Fine Mineral Particles in Aqueous Solution. Colloids Surfaces, 57 (1991) 4960. 10.1016/0166-6622(91)80179-rSearch in Google Scholar

22. Gonzenbach, U. T.; Studart, A.; Tervoort, E. and Gauckler, L. J.: Ultrastable Particle-Stabilized Foams. Angew Chem Int Edit, 45 (2006) 35263530. PMid:16639761; 10.1002/ange.200503676Search in Google Scholar

23. Binks, B. P.; Campbell, S.; Mashinchi, S. and Piatko, M. P.: Dispersion Behavior and Aqueous Foams in Mixtures of a Vesicle-Forming Surfactant and Edible Nanoparticles. Lang, 31 (2015) 29672978. PMid:25734773; 10.1021/la504761xSearch in Google Scholar PubMed

24. Del, Gado E.; Isa, L., Amstad, E., Schwenke, K.; Ilg, P.; Kröger, M. and Reimkult, E.: Adsorption of Core-Shell Nanoparticles at Liquid-Liquid Interfaces. Soft Matter, 7(17) (2011) 76637675. 10.1039/c1sm05407dSearch in Google Scholar

25. Tay, K. A. and Bresme, F.: Wetting properties of passivated metal nanocrystals at liquid-vapor interfaces: a computer simulation study. Journal of the American Chemical Society, 128 (43) (2006) 1416614175. PMid:17061901; 10.1021/ja061901wSearch in Google Scholar PubMed

26. Ranatunga, R. J. K. U.; Kalescky, R. J.; Chiu, C. C. and Nielsen, S. O.: Molecular Dynamics Simulations of Surfactant Functionalized Nanoparticles in the Vicinity of an Oil/Water Interface. Journal of Physical Chemistry C, 114 (28) (2015) 1215112157. 10.1021/jp105355ySearch in Google Scholar

27. Masschaele, K.; Park, B. J.; Furst, E. M.; Franzaer, J. and Vermant, J.: Finite ion-size effects dominate the interaction between charged colloidal particles at an oil-water interface. Physical Review Letters, 105(4) (2010) 048303. PMid:20867891; 10.1103/PhysRevLett.105.048303Search in Google Scholar PubMed

28. Wang, Y.; GeJ.; Zhang, W.; Zhang, G.; Yang, L. and Song, K.: Surface property and enhanced oil recovery study of foam aqueous dispersions comprised of surfactants-organic acids-nanoparticles. RSC Advances, 6 (2016). 10.1039/C6RA22988CSearch in Google Scholar

29. Wang, Y.; GeJ.; Zhang, G.; Jiang, P.; Zhang, W. and Lin, Y.: Adsorption behavior of dodecyl hydroxypropyl sulfobetaine on limestone in high salinity water. RSC Advances, 5(73) (2015) 5973859744. 10.1039/C5RA10694JSearch in Google Scholar

30. Nedyalkov, M.; Krustev, R.; Kashchiev, D.; Platikanov, D. and Exerowa, D. E.: Permeability of Newtonian Black Foam Films to Gas. Colloid Polym Sci, 266 (1998) 291296. 10.1007/BF01452592Search in Google Scholar

31. Wang, Y.; Ge, J.; Song, K.; Zhang, G. and Jiang, P.: Effect of organic acid chain length on foam performance in a porous medium. Journal of Dispersion Science and Technology, 38(10) (2017) 11. 10.1080/01932691.2016.1251324Search in Google Scholar

32. Wang, Y. and Ge, J.: Effect of Surface Dilatational Modulus on Bubble Generation in Visualized Pore-Throat Models. Journal of Surfactants and Detergents, 21(2) (2018) 283291. dx.doi.org/10.1002/jsde.12023. 10.1002/jsde.12023Search in Google Scholar

33. Wang, Y.: Establishment of High Surface Dilatational Modulus Foaming System for Vug-fractured Reservoir and Study on Foam Flow Behaviors. China University of Petroleum (East China), Qingdao, China, 2017.Search in Google Scholar

Received: 2019-04-25
Accepted: 2019-07-08
Published Online: 2020-09-07
Published in Print: 2020-09-16

© 2020, Carl Hanser Publisher, Munich

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110698/html?lang=en
Scroll to top button