Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
-
Moussa Alibrahim
Abstract
A surfactant mediated cloud point extraction (CPE) has been developed to remove color from wastewater containing toxic Eosin Y dye, using Triton X-114 (TX-114) as nonionic surfactant. Most of the dye molecules become solubilized in the coacervate phase leaving dilute phase free of dyes. The effects of surfactant concentration, temperature and salt concentration on the extraction yield of the dye have been investigated and the optimum conditions were obtained for the removal of toxic Eosin Y. It was found that phase separation was complete and the recovery of Eosin Y was very effective in the presence of NaCl as an electrolyte. The results showed that up to 20 ppm of Eosin Y, more than 97% can quantitatively be removed by cloud point extraction procedure in one single extraction at optimum conditions. In addition, it was observed that at a dye concentration of 5 ppm and a Triton X-114 concentration of 2.75 wt%, 99% of the dye eosin Y can be removed. At 50°C, a dye removal of 96.8%–99% can be achieved with a higher dye concentration of up to 25 ppm when 2.75wt% Triton X-114 and 0.02 M salt (NaCl) are present. It is concluded that the cloud point extraction techniques for the dye removal may be an alternative to the present dye removal processes.
Kurzfassung
Eine tensidvermittelte Trübungspunktextraktionsmethode (cloud point extraction, CPE) wurde entwickelt, um aus Abwasser den giftigen Farbstoff Eosin Y zu entfernen, wobei Triton X-114 (TX-114) als nichtionisches Tensid verwendet wird. Die meisten Farbstoffmoleküle werden in der Koazervatphase löslich, so dass die verdünnte Phase frei von Farbstoffen bleibt. Die Auswirkungen der Tensidkonzentration, der Temperatur und der Salzkonzentration auf die Extraktionsausbeute des Farbstoffs wurden untersucht, und es wurden die optimalen Bedingungen für die Entfernung des toxischen Eosin Y ermittelt. Es wurde festgestellt, dass die Phasentrennung vollständig und die Rückgewinnung von Eosin Y in Gegenwart von NaCl als Elektrolyt sehr wirksam war. Die Ergebnisse zeigten, dass bis zu 20 ppm Eosin Y, d.h. mehr als 97%, quantitativ durch Trübungspunkt-Extraktionsverfahren in einer einzigen Extraktion unter optimalen Bedingungen entfernt werden können. Außerdem wurde beobachtet, dass bei einer Farbstoffkonzentration von 5 ppm und bei einer Triton X-114-Konzentration von 2,75 Gew.-% der Farbstoff Eosin Y zu 99% entfernt werden kann. Bei 50°C kann eine Farbstoffentfernung von 96,8%–99% mit einer höheren Farbstoffkonzentration von bis zu 25 ppm erzielt werden, wenn 2,75 Gew.-% Triton X-114 und 0,02 M Salz (NaCl) anwesend sind. Es wird der Schluss gezogen, dass die Trübungspunkt-Extraktionstechniken für die Farbstoffentfernung eine Alternative zu den derzeitigen Farbstoffentfernungsverfahren sein können.
References
1. Hsiu-Mei, C., Ting-Chien, C., San-Dec, P. and Hung-Lung, C.: Adsorption characteristic of Organe II and Chrysophenine on sludge adsorbent and activated carbon fibers. J. Hazard Mater.161 (2009) 1384–1390. 18539385 10.1016/j.jhazmat.2008.04.102Search in Google Scholar
2. Shokrollahi, A., Alizadeh, A., Malekhosseini, Z. and Ranjbar, M.: Removal of Bromocresol Green from Aqueous solution via Adsorption on ziziphus nummularia as a New, Natural, and Low-Cost Adsorbent: Kinetic and Thermodynamic Study of Removal process. J. Chem. Eng. Data.56 (2011) 3738–3746. 10.1021/je200311ySearch in Google Scholar
3. Ali, A., Uzair, S. and Faroog, U.: Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies. Tenside Surf. Det.54 (2017) 342–352. 10.3139/113.110509Search in Google Scholar
4. Kaur, N., Sharma, S. and Khosla, E.: Green and Efficient Reverse Micellar Extraction and Recovery of Mixed Ionic Dyes from Textile Effluent. Tenside Surf. Det.55 (2018) 281–286. 10.3139/113.110572Search in Google Scholar
5. Finar, I. L.: 1973. Organic Chemistry: The Fundamental Principles, Vol. 1, Sixth Ed. Addison Wesley Longman Ltd., England, pp. 890–891.Search in Google Scholar
6. Golder, A. K., Hridaya, N., Samanta, A. N. and Ray, S.: Electrocoagulation of methylene blue and eosin yellowish using mild steel electrodes. J. Hazard. Mater.127 (2005) 134–140. 16102898 10.1016/j.jhazmat.2005.06.032Search in Google Scholar
7. Arvanitoyannis, I., Eleftheriadis, I. and Tsatsaroni, E.: Influence of pH on adsorption of dye-containing effluents with different bentonites. Chemosphere.18 (1989) 1707–1711. 10.1016/0045-6535(89)90454-2Search in Google Scholar
8. Mahrous, Y. S. and El-Midany, A. A.: Optimization of dye removal by activated carbon prepared from sawdust. Materials Testing.58 (2016) 155–160. 10.3139/120.110829Search in Google Scholar
9. Alam, S., Ahmad, M. and Bangash, F. K.: Removal of Brilliant Blue R from Aqueous Solutions on Activated Carbon Produced from Carbonaceous Substrate. Tenside Surf. Det.46 (2009) 205–213. 10.3139/113.110025Search in Google Scholar
10. Jae-Hyun, B., Dong-Ik, S. and Young-Woong, J.: Adsorption of Anionic Dye and Surfactant from Water onto Organomontmorillonite. Sep. Sci. Technol.35 (2000) 353–365. 10.1081/SS-100100161Search in Google Scholar
11. Daneshvar, N., Ashassi-Sorkhabi, H. and Tizpar, A.: Decolorization of organe II by electrocoagulation method. Sep. Purif. Technol.31(2) (2003) 153–162. 10.1016/S1383-5866(02)00178-8Search in Google Scholar
12. Ceron-Rivera, M., Davila-Jimenez, M. M. and Elizalde-Gonzalez, M. P.: Degradation of the textile dyes Basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes. Chemosphere. 55(1) (2004) 1–10. 14720540 10.1016/j.chemosphere.2003.10.060Search in Google Scholar PubMed
13. Isik, M. and Sponza, D. T.: A batch kinetic study on decolorization and inhibition of Reactive Black 5 and Direct Brown 2 in an anaerobic mixed culture. Chemosphere.55 (2004) 119–128. 14720554 10.1016/j.chemosphere.2003.10.008Search in Google Scholar PubMed
14. Gullickson, N. D., Scamehorn, J. F. and Harwell, J. H.: 1989. Liquid-coacervate extraction. In: Scamehorn, J. F., Harwell, J. H. (Eds.), Surfactant Based Separation Processes. Marcel Dekker Inc., New York, pp. 139–152.Search in Google Scholar
15. Quina, F. H. and Hinze, W. L.: Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind. Eng. Chem. Res.38 (1999) 4150–4168. 10.1021/ie980389nSearch in Google Scholar
16. Ghaedi, M., Shokrollahi, A., Niknam, K., Niknam, E., and Soylak, M.: Development of efficient method for preconcentration and determination of copper, nickel, zinc and iron ions in environmental samples by combination of cloud point extraction and flame atomic absorption spectrometry. Cent. Eur.J. Chem.7 (2009) 148–154. 10.2478/s11532-008-0102-8Search in Google Scholar
17. Ghaedi, M., Shokrollahi, A., Fathi, M. R., Gharaghani, S. and Soylak, M.: Cloud point extraction for the determination of copper in environmental samples by flame atomic absorption spectrometry. Quim. Nova.31 (2008) 70. 10.1590/s0100-40422008000100015Search in Google Scholar
18. Soylak, M., Kaya, B. and Tuzen, M.: Copper(II)-8-hydroxyquinoline coprecipitation system for preconcentration and separation of cobalt(II) and manganese(II) in real samples. J. Haz. Mater.147 (2007) 832–837. 17324505 10.1016/j.jhazmat.2007.01.082Search in Google Scholar PubMed
19. Yao, B. and Yang, L.: Equilibrium partition of polycyclic aromatic hydrocarbons in cloud point extraction with a silicone surfactant. J. Colloid Interface Sci.319 (2008) 316–321. 18083178 10.1016/j.jcis.2007.11.033Search in Google Scholar PubMed
20. Li, C. F., Wong, J. W. C., Huie, C. W. and Choi, M. M. F.: On-line flow injection-cloud point preconcentration of polycyclic aromatic hydrocarbons coupled with high-performance liquid chromatography. J. Chromatogr.1214 (2008) 11–16. 19004448 10.1016/j.chroma.2008.10.062Search in Google Scholar PubMed
21. Abdollahi, H. and Bagheri, L.: Simultaneous spectrophotometric determination of Vitamin K3 and 1,4-naphthoquinone after cloud point extraction by using genetic algorithm based wavelength selection-partial least squares regression. Anal. Chim. Acta.514 (2004) 211–218. 10.1016/j.aca.2004.03.048Search in Google Scholar
22. Araújo Padilha, C. E., Azevedo, J. C. S., Sousa, F. C., Oliveira, S. D. and Santos, E. S.: Recovery of polyphenols from camu-camu (Myrciaria dubia H.B.K. McVaugh) depulping residue by cloud point extraction. Chinese Journal of Chemical Engineering.26 (2018) 2471–2476. 10.1016/j.cjche.2017.10.032Search in Google Scholar
23. Zheng, H., Hong, J., Luo, X., Li, S. and Wang, M.: Combination of sequential cloud point extraction and hydride generation atomic fluorescence spectrometry for preconcentration and determination of inorganic and methyl mercury in water samples. Microchemical Journal.145 (2019) 806–812. 10.1016/j.microc.2018.11.057Search in Google Scholar
24. Bahchevanska, T. S., Milcheva, N., Zaruba, S., Andruch, V. and Gavazov, K.: A green cloud-point extraction-chromogenic system for vanadium determination. Journal of Molecular Liquids.248 (2017) 135–142. 10.1016/j.molliq.2017.10.046Search in Google Scholar
25. Luo, X., Zheng, H., Zhang, Z., Wang, M. and Wang, M.: Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection. Microchemical Journal.137 (2018) 148–154. 10.1016/j.microc.2017.09.026Search in Google Scholar
26. Ghasemi, E. and Kaykhaii, M.: Application of Micro-cloud point extraction for spectrophotometric determination of Malachite green, Crystal violet and Rhodamine B in aqueous samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.164 (2016) 93–97. 27085294 10.1016/j.saa.2016.04.001Search in Google Scholar PubMed
27. Patil, S. and Agrawal, M. A.: Interactions between Dyes and Cetyl-trimethyl Ammonium Bromide. Tenside Surfactants Detergents.48 (2011) 228–231. 10.3139/113.110126Search in Google Scholar
28. Reffas, H., Benabdallah, T. and Youcef, M. H.: A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants. Tenside Surfactants Detergents.54 (2017) 179–186. 10.3139/113.110488Search in Google Scholar
29. Alibrahim, M.: Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts. Tenside Surfactants Detergents.54 (2017) 160–164. 10.3139/113.110484Search in Google Scholar
30. Alibrahim, M.: Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants. Tenside Surfactants Detergents.51 (2014) 333–338. 10.3139/113.110315Search in Google Scholar
31. Habbal, S., Haddou, B., Canselier, J. P. and Gourdon, C.: Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System. Tenside Surfactants Detergents.56 (2019) 112–118. 10.3139/113.110611Search in Google Scholar
32. Prévost, S., Coulombeau, H., Baczko, K., Berthon, L., Zorz, N., Desvaux, H., Testard, F., Zemb, Th. and Larpent, C.: Thermo-responsive Metal-chelating Surfactants: Properties and Use in Cloud Point Extraction of Uranyl Nitrate. Tenside Surfactants Detergents.46 (2009) 100–104. 10.3139/113.110012Search in Google Scholar
33. Akita, S., Rovira, M., Sastre, A. M. and Takeuchi, H.: Cloud-Point Extraction of Gold(lll) with Nonionic Surfactant–Fundamental Studies and Application to Gold Recovery from Printed Substrate Sep. Sci. Technol.33 (1998) 2159–2177. 10.1080/01496399808545721Search in Google Scholar
34. Manohar, C.: Mechanism of the clouding phenomenon in surfactant solutions, in: Adsorption and aggregation of surfactants in solution. Surfactant science series, Vol. 109, Mittal, K. L., Shah, D. O., eds., Marcel Dekker, New York, (2003), p. 211–217. 10.1201/9780203910573.ch11Search in Google Scholar
35. Wang, Z., Zhao, F. and Li, D.: Determination of solubilization of phenol at coacervate phase of cloud point extraction. Colloid. Surf. A: Physico. Eng. Aspects.216 (2003) 207–214. 10.1016/S0927-7757(02)00560-5Search in Google Scholar
36. Kille, E. D. and Chiou, C. T.: Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ. Sci. Technol.23 (1989) 832. 10.1021/es00065a012Search in Google Scholar
37. Hung, K. C., Chen, B. H. and Yu, L. E.: Cloud-point extraction of selected polycyclic aromatic hydrocarbons by nonionic surfactants. Sep. Pur. Technol.57 (2007) 1–10. 10.1016/j.seppur.2007.03.004Search in Google Scholar
38. Mitchell, D. J., Tiddy, G. J. T., Waring, L., Bostock, T. and McDonald, M. P.: Phase behaviour of polyoxyethylene surfactants with water. Mesophase structures and partial miscibility (cloud points). J. Chem. Soc. Faraday Trans.179 (1983) 975–1000. 10.1039/f19837900975Search in Google Scholar
39. Strey, R.: Experimental facts: water-nonionic surfactant systems, and the effect of additives. Phys. Chem.100 (3) (1996) 182–189. 10.1002/bbpc.19961000303Search in Google Scholar
40. Lindman, B. and Wennerstrom, H.: Nonionic micelles grow with increasing temperature. J. Phys. Chem.95 (1991) 6053–6054. 10.1021/j100168a063Search in Google Scholar
41. Martinez, R., Gonzalo, E., Cordero, B., Pavon, J. L., Pinto, C. and Laespada, E. F.: Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J. Chromatogr. A.902 (2000) 251–265. 10.1016/S0021-9673(00)00837-2Search in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow
Articles in the same Issue
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow