Study on the Complex System of Sodium Lauryl Diphenyl Ether Disulfonate and Dodecyl Dimethyl Hydroxyethyl Ammonium Chloride
-
Jiajia Liu
Abstract
Surface chemical properties of the mixed system of sodium lauryl diphenyl ether disulfonate (C12-MADS, an anionic surfactant with double hydrophilic groups) and dodecyl dimethyl hydroxyethyl ammonium chloride (K3, a cationic quaternary ammonium surfactant) along with different proportion have been studied at 298 K and 318 K. Synergistic parameters of the mixture in the mixed micelles and the mixed adsorption layer were also calculated by using the regular solution theory. The composition of the mixed micelles and of the mixed adsorption layer was obtained. The results show that the surface chemical properties of C12-MADS/K3 mixture are better than either of single system, and when the solution ratio (α1 = [n (K3)/n (C12-MADS + K3)]) is 0.7 and 0.9, the surface tension curve has a double inflection point which indicates a synergistic effect between the surfactant molecules. The complex system showed a strong synergistic effect in the mixed adsorption layer and the mixed micelles. The mixed system of C12-MADS/K3 has synergism in surface tension reduction effectiveness, surface tension reduction efficiency and mixed micelle formation. When α1 is 0.67, the synergistic effect is the strongest.
Kurzfassung
Oberflächenchemische Eigenschaften des Misch-Systems aus Natriumlauryldiphenyletherdisulfonat (C12-MADS, einem anionischen Tensid mit zwei hydrophilen Gruppen) und Dodecyldimethylhydroxyethylammoniumchlorid (K3, ein kationisches quartäres Ammoniumtensid) mit unterschiedlichen Anteilen wurden bei 298 K und 318 K untersucht. Die synergistischen Parameter der Mischung in den Misch-Mizellen und der Misch-Adsorptionsschicht wurden unter Verwendung der regulären Lösungstheorie berechnet. Die Zusammensetzung der Misch-Mizellen und der Misch-Adsorptionsschicht wurde bestimmt. Die Ergebnisse zeigen, dass die oberflächenchemischen Eigenschaften des C12-MADS/K3-Misch-Systems besser sind als die der einzelnen Tenside. Wenn das Lösungsverhältnis (α1 = [n (K3)/n (C12-MADS + K3)]) 0,7 bzw. 0,9 beträgt, erscheint in der Oberflächenspannungskurve ein doppelter Wendepunkt, was eine synergistische Wirkung zwischen den Tensidmolekülen anzeigt. Das Komplex-System zeigte einen starken synergistischen Effekt in der Misch-Adsorptionsschicht und den Misch-Mizellen. Das System aus C12-MADS und K3 hat einen Synergismus bei der Verringerung der Oberflächenspannung, der Verringerung der Oberflächenspannung und der Bildung von gemischten Mizellen. Wenn α1 = 0,67 beträgt, ist der synergistische Effekt am größten.
References
1. Hu, C. C., Li, R. Q., Yang, H. and Wang, J. B.: Properties of binary surfactant systems of nonionic surfactants C12E10, C12E23, and C12E42 with a cationic gemini surfactant in aqueous solutions. J. Colloid Interface Sci.356 (2011) 605–613. PMid:21316703; 10.1016/j.jcis.2011.01.062Suche in Google Scholar PubMed
2. Azum, N., Rub, M. A., Asiri, A. M., Alamry, K. A. and Marwani, H. M.: Self-Aggregation of Cationic Dimeric and Anionic Monomeric Surfactants with Nonionic Surfactant in Aqueous Medium. J. Dispersion Science & Technology.35 (3) (2014) 358–363. 10.1080/01932691.2013.788451Suche in Google Scholar
3. Kang, P., Xu, H. J. and Sun, C. L.: Properties of Binary Surfactant System of Alkyl Polyglycosides and α-Sulphonated Fatty Acid Methyl Ester. Tenside Surf. Det.50 (2014) 1–7. 10.3139/113.110248Suche in Google Scholar
4. Li, F. F., Xu, H. J. and Kang, P.: Properties of Binary Surfactant Mixturesof Anionic Gemini Surfactant and Amphoteric Surfactant. Tenside Surf. Det.53 (2016) 64–69. 10.3139/113.110411Suche in Google Scholar
5. Li, F., Rosen, M. J. and Sulthana, S. B.: Surface properties of cationic gemini surfactants and their interaction with alkylglucoside or maltoside surfactants. Langmuir.17 (4) (2001) 1037–1042. 10.1021/la001162bSuche in Google Scholar
6. Kume, G., Gallotti, M. and Nunes, G.: Review on Anionic/Cationic Surfactant Mixtures. J Surfactants Deterg.11 (2008) 1–11. 10.1007/s11743-007-1047-1Suche in Google Scholar
7. Sharma, R., Nandni, D. and Mahajan, R. K.: Interfacial and micellar properties of mixed systems of tricyclic antidepressant drugs with polyoxyethylene alkyl ether surfactants. Colloids Surfaces A.451 (2014) 107–116. 10.1016/j.colsurfa.2014.03.049Suche in Google Scholar
8. Nandni, D. and Mahajan, R. K.: Micellar and Interfacial Behavior of Cationic Benzalkonium Chloride and Nonionic Polyoxyethylene Alkyl Ether Based Mixed Surfactant Systems. J Surfactants Deterg.16 (2013) 587–599. 10.1007/s11743-012-1427-zSuche in Google Scholar
9. Xu, H. J. and Xu, Y. H.: Study of the Complex System of Fatty Alcohol Polyoxyethylene Ether Carboxylate and Alkyl Betaine for Heavy Oil Recovery. Tenside Surf. Det.54 (2017) 546–550. 10.3139/113.110532Suche in Google Scholar
10. Zhou, Q. and Rosen, M. J.: Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir.19 (2003) 4555–4562. 10.1021/la020789mSuche in Google Scholar
11. Sharma, K. S., Rodgers, C., Palepu, R. M. and Rakshit, A. K.: Studies of mixed surfactant solutions of cationic dimeric (gemini) surfactant with nonionic surfactant C12E6 in aqueous medium. J Colloid Interface Sci.268 (2003) 482–488. PMid:14643250; 10.1016/j.jcis.2003.07.038Suche in Google Scholar PubMed
12. Shi, C. X., Liao, G. Z. and Liu, W. D.: Synthesis of Internal Olefin Sulfonate and its Application in Oil Recovery. Arab J Sci Eng.39 (2014) 37–41. 10.1007/s13369-013-0841-5Suche in Google Scholar
13. Tucker, I., Penfold, J., Thomas, R. K. and Tildesley, D. J.: Interplay between the surface adsorption and solution phase behavior in dialkyl chain cationic-nonionic surfactant mixtures. Langmuir.25 (2009) 3924–3931. PMid:18998711; 10.1021/la801302zSuche in Google Scholar PubMed
14. Zhao, Y., Xu, Z. G., Li, Z. S., Qiao, W. D. and Cheng, L. B.: Synthesis and Interfacial Tension Behavior of Heavy Alkyl Benzene Sulfonates. Petroleum Science and Technology, 24 (2006) 821–827. 10.1081/LFT-200041180Suche in Google Scholar
15. Xu, H. j., Geng, H., Kang, P. and ChenD. D.: Synthesis and Properties of a Novel Linear Alkylated Diphenylmethane Sulfonate Gemini Surfactant. J Surfactant Deterg, 16 (2013) 57–61. 10.1007/s11743-012-1407-3Suche in Google Scholar
16. Cui, Z. G., Du, X. R., Pei, X. M., Jiang, J. Z. and Wang, F.: Synthesis of Didodecylmethylcarboxyl Betaine and Its Application in Surfactant–Polymer Flooding. J Surfactangts Deterg.15 (2012) 685–694. 10.1007/s11743-012-1396-2Suche in Google Scholar
17. Rosen, M. J. and Hua, X. Y.: Surface concentrations and molecular interactions in binary mixtures of surfactants. J Colloid Interface Sci.86 (1982) 164–172. 10.1016/0021-9797(82)90052-2Suche in Google Scholar
18. Almgren, M. and Swarup, S.: Size of sodium dodecyl sulfate micelles in the presence of additives i. alcohols and other polar compounds. J Colloid Interface Sci, 91 (1983) 256–266. 10.1016/0021-9797(83)90330-2Suche in Google Scholar
19. Matsuki, H., Aratono, M., Kaneshina, S. and Motomura, K.: Extremely strong interaction of sodium decyl sulfate and decyltrimethylammonium bromide in molecular aggregates. J Colloid Interface Sci, 191 (1997) 120. PMid:9241212; 10.1006/jcis.1997.4924Suche in Google Scholar PubMed
20. Vautier-Giongo, C., Bakshi, M. S., Singh, J., Ranganathan, R., Hajdu, J. and Bales, B. L.: Effects of interactions on the formation of mixed micelles of 1,2-diheptanoyl-sn-glycero-3-phosphocholine with sodium dodecyl sulfate and dodecyltrimethylammonium bromide. J Colloid Interface Sci, 282 (2005) 149–155. PMid:15576093; 10.3969/j.issn.1001-1803.2005.01.001Suche in Google Scholar
21. Bakshi, M. S., Singh, J., Singh, K. and Kaur, G.: Mixed micelles of cationic 12-2-12 gemini with conventional surfactants: the head group and counterion effects. Colloids Surfaces A, 237 (2004) 61–71. 10.1016/j.jcis.2004.08.071Suche in Google Scholar PubMed
22. Lee, D. H., Chang, H. W. and Cody, R. D.: Synergism effect of mixed surfactant solutions in remediation of soil contaminated with PCE. Geosciences Journal, 8 (2004) 319–323. 10.1007/BF02910251Suche in Google Scholar
23. Rosen, M. J., Zhu, Z. H. and Gao, T.: Synergism in Binary Mixture of Surfactants: 11. Mixtures Containing Mono- and Disulfonated Alkyl- and Dialkyldiphenylethers. J Colloid Interface Sci, 133 (1993) 473–478. 10.1006/jcis.1993.1183Suche in Google Scholar
24. Ben-Moshe, M. and Magdassi, S.: Surface activity and micellar properties of anionic gemini surfactants and their analogues. Colloids Surfaces A, 250 (2004) 403–408. 10.1016/j.colsurfa.2004.01.044Suche in Google Scholar
25. Rosen, M. J. and Zhu, Z. H.: Synergism in binary mixture of surfactants. J Colloid Interface Sci, 133 (1989) 473–478. 10.1006/S0021-9797(89)80058-XSuche in Google Scholar
26. Ma, Y. H., Jiang, R. and Zhao, J. X.: Surface Adsorption and Micelle Formation of C9pPHCNa and C10TABr Mixed Aqueous Solutions. Acta Physico-Chimica Sinica, 21 (2005) 939–943. 10.3866/PKU.WHXB20050823Suche in Google Scholar
27. Liang, J. L., Xu, H. J., Xi, W. H., Fang, Y. J. and Huang, Y. R.: Study on the complexation of sodium alkyl diphenyl ether disulfonate with common ionic surfactants. Daily chemical industry, 35 (2005) 1–5. 10.3969/j.issn.1001-1803.2005.01.001Suche in Google Scholar
28. Rosen, M. J. and Kunjappu, J. T.: Surfactants and Interfacial Phenomena, 4th Edition. Colloids & Surfaces 40. June (2012). 10.1002/9781118228920Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Characteristic and Application of Anionic Dimeric Surfactants: A Review
- Body Care
- Reduction of Irritation Potential Caused by Anionic Surfactants in the Use of Various Forms of Collagen Derived from Marine Sources in Cosmetics for Children
- Environmental Chemistry
- Optimization of Biosorption Conditions for Surfactant Induced Decolorization by Anaerobic Sludge Granules
- Evaluation of Polyether Copolymer as Green Scale and Corrosion Inhibitor in Seawater
- Physical Chemistry
- Schiff' Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Medium
- Study on the Synergism of Binary Surfactant Mixtures containing N-lauroyl-N-methyl Taurine Sodium
- Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
- Study on the Complex System of Sodium Lauryl Diphenyl Ether Disulfonate and Dodecyl Dimethyl Hydroxyethyl Ammonium Chloride
- Synthesis
- Synthesis and Properties of 9,10-Dihydroxystearic Acid Ethoxylate
- Synthesis and Properties of Lauryl Phosphate Monoester
- Novel Surfactants
- Dehydroabietyl Glycidyl Ether Grafted Hydroxyethyl Chitosan: Synthesis, Characterization and Physicochemical Properties
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Characteristic and Application of Anionic Dimeric Surfactants: A Review
- Body Care
- Reduction of Irritation Potential Caused by Anionic Surfactants in the Use of Various Forms of Collagen Derived from Marine Sources in Cosmetics for Children
- Environmental Chemistry
- Optimization of Biosorption Conditions for Surfactant Induced Decolorization by Anaerobic Sludge Granules
- Evaluation of Polyether Copolymer as Green Scale and Corrosion Inhibitor in Seawater
- Physical Chemistry
- Schiff' Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Medium
- Study on the Synergism of Binary Surfactant Mixtures containing N-lauroyl-N-methyl Taurine Sodium
- Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
- Study on the Complex System of Sodium Lauryl Diphenyl Ether Disulfonate and Dodecyl Dimethyl Hydroxyethyl Ammonium Chloride
- Synthesis
- Synthesis and Properties of 9,10-Dihydroxystearic Acid Ethoxylate
- Synthesis and Properties of Lauryl Phosphate Monoester
- Novel Surfactants
- Dehydroabietyl Glycidyl Ether Grafted Hydroxyethyl Chitosan: Synthesis, Characterization and Physicochemical Properties