Home Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
Article
Licensed
Unlicensed Requires Authentication

Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants

  • Lei Wang , Pei Liu , Xiaojuan Lai , Jie Wang and Huaixin Li
Published/Copyright: May 6, 2019
Become an author with De Gruyter Brill

Abstract

A series of betaine-type Gemini surfactants (Cs-BGS, where C is the methylene part of the spacer, s = 2, 4, 6) were synthesized from sodium 3-chloro-2-hydroxypropanesulfonate, oleamidopropyl dimethylamine and bromoalkane. The chemical structure of the prepared compounds was confirmed by 1H NMR, 13C NMR, IR spectra, and elemental analysis. Their critical micelle formation concentrations (CMC) in the aqueous solution at 25 °C were determined by measuring the surface tension and the electrical conductivity. As the length of the spacer increased, the values of their CMC and γcmc also increased. The surface tension measurements of C2-BGS revealed that the surfactant possesses a low CMC, is very efficient in reducing the surface tension, and is very strongly adsorbed at the air-water interface. In addition, the adsorption and micellization behavior of Cs-BGS was estimated from the efficiency of surface tension reduction (pC20), minimum average surface area per surfactant molecule (Amin), and standard free energies of micellization and adsorption. These properties are significantly affected by the spacers and the adsorption is more favored than the micellization.

Kurzfassung

Eine Reihe von Gemini-Tensiden vom Betain-Typ (Cs-BGS, wobei C der Methylenteil des Spacers ist, s = 2, 4, 6) wurde aus Natrium-3-chlor-2-hydroxypropansulfonat, Oleamidopropyldimethylamin und Bromalkan synthetisiert. Die chemische Struktur der hergestellten Verbindungen wurde durch 1H-NMR, 13C-NMR, IR-Spektroskopie und Elementaranalyse bestätigt. Ihre kritischen Mizellenbildungskonzentrationen (CMC) in der wässrigen Lösung bei 25 °C wurden durch Messung der Oberflächenspannung und der elektrischen Leitfähigkeit bestimmt. Mit zunehmender Länge des Spacers nahmen ihre CMC bzw. ihre Oberflächenspannung bei der CMC (γCMC) zu. Die Messungen der Oberflächenspannung von C2-BGS ergaben, dass das Tensid eine niedrige CMC hat, sehr effizient bei der Verringerung der Oberflächenspannung ist und an der Luft-Wasser-Grenzfläche stark adsorbiert. Darüber hinaus wurde das Adsorptions- und Mizellisierungsverhalten von Cs-BGS aus der Effizienz der Verringerung der Oberflächenspannung (pC20), der minimalen durchschnittlichen Fläche pro Tensidmolekül (Amin) und den Gibbs-Energien für die Mizellisierung und die Adsorption geschätzt. Diese Eigenschaften werden signifikant von den Spacern beeinflusst und die Adsorption ist stärker begünstigt als die Mizellenbildung.


Correspondence address, Professor Lai Xiaojuan, 509 Laboratory of Engineering Training Center, Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Weiyang District, Xi'an, Shaanxi Province, P.R. China, 710021, Tel.: 136-4925-5462, E-Mail:

Lei Wang is currently a professor at the college of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology. He received his Ph.D. in Applied Chemistry at Shaanxi University of Science and Technology in China. His research interests include preparation and application of oilfield chemicals and molecular structure design and properties of environmentally friendly polymer materials.

Pei Liu is a Master's student at the college of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology. Her research deals with the synthesis and the properties of surfactants.

Xiaojuan Lai is currently a professor at the college of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology. She received her Ph.D. in Material Physics and Chemistry at Shaanxi University of Science and Technology in China. Her research interests include synthesis of functional polymer materials and research on oilfield chemicals.

Jie Wang is a Master's student at the college of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology. Her research deals with the synthesis and the properties of surfactants.

Huaixin Li is an undergraduate at the college of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology. His research deals with the synthesis and the properties of surfactants.


References

1. Zana, R.: Dimeric (Gemini) Surfactants, in: K.Holmberg (Ed.) Novel Surfactants, Dekker, New York (1998) 241. 10.1201/9780203911518.ch7Search in Google Scholar

2. Zana, R.: Structure-performance relationships in surfactants, in: K.Esumi, M.Ueno (Eds.), Structure-performance relationships in surfactants, Dekker, New York (1997) 255. 10.1021/bk-1984-0253Search in Google Scholar

3. Rosen, M. J. and Tracy, D. J.: Gemini surfactants, J. Surfact. Deterg.1 (1998) 547. 10.1533/9781845698614.151Search in Google Scholar

4. Menger, F. M. and Keiper, J. S.: Gemini surfactants, Angew Chem. Int. Ed. Engl.39 (2000) 1906. 10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-QSearch in Google Scholar

5. Zana, R. and Xia, J: Gemini surfactants : synthesis, interfacial and solution-phase behavior, and applications, in: RaoulZana, JidingXia (Eds), Gemini surfactants: Synthesis, interfacial and solution-phase behavior, and applications, Dekker, New York (2004) 348. 10.1201/9780203913093Search in Google Scholar

6. Menger, F. M. and Littau, C. A.: Gemini surfactants: a new class of self-assembling molecules, J. Am. Chem. Soc.115 (1993) 10083. 10.1021/ja00075a025Search in Google Scholar

7. Tyagi, P. and Tyagi, R.: Synthesis, structural properties and applications of gemini surfactants: a review, Tenside Surfact Det.46 (2009) 373382. 10.3139/113.110045Search in Google Scholar

8. Zana, R.: Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution, J. Colloid Interface Sci.248 (2002) 203220. PMid:16290524; 10.1006/jcis.2001.8104Search in Google Scholar

9. Liu, Z., Gao, R., Dong, Z., Li, X. and Zhao, J.: Quaternary ammonium gemini surfactants used in enhanced oil recovery: synthesis, properties, and flooding experiments, Tenside Surfact. Det.54 (2017) 26027. 10.3139/113.110489Search in Google Scholar

10. Alami, E., Beinert, G., Marie, P. and Zana, R.: Alkanediyl-.alpha.,.omega.-bis (dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water interface, Langmuir.9 (2002) 14651467. 10.1021/la00030a006Search in Google Scholar

11. Shukla, D. and Tyagi, V. K.: Preparation and performance properties of a series of novel anionic gemini surfactants, Tenside Surfact Det.45 (2008) 7275. 10.3139/113.100363Search in Google Scholar

12. FerdinandDevi, nsky, Lacko, I. and Imam, T.: Relationship between structure and solubilization properties of some bisquaternary ammonium amphiphiles, J. Colloid Interface Sci.143 (1991) 336342. 10.1016/0021-9797Search in Google Scholar

13. Alami, E., Levy, H., Zana, R. and Skoulios, A.: Alkanediyl-.alpha omega.-bis (dimethylalkylammonium bromide) surfactants. 2. structure of the lyotropic mesophases in the presence of water, Langmuir.9 (1993) 940944. 10.1021/la00028a011Search in Google Scholar

14. Frindi, M., Michels, B., Levy, H., and Zana, R.: Alkanediyl-.alpha omega.-bis (dimethylalkylammonium bromide) surfactants. 4. Ultrasonic absorption studies of amphiphile exchange between micelles and bulk phase in aqueous micellar solution, Langmuir.10 (1994) 11401145. 10.1021/la00016a028Search in Google Scholar

15. Danino, D., Talmon, Y., and Zana, R.: Alkanediyl-.alpha omega.-bis (dimethylalkylammonium bromide) surfactants (dimeric surfactants). 5. aggregation and microstructure in aqueous solutions, Langmuir.11 (1995) 14481456. 10.1021/la00005a008Search in Google Scholar

16. Ali, E. S.: Synthesis, characterization and thermodynamic parameters of anionic gemini surfactants with different spacer groups, Tenside Surfact Det.44 (2007) 281286. 10.3139/113.100349Search in Google Scholar

17. Li, Z. X., And, C. C. D., and Thomas, R. K.: Neutron reflectivity studies of the surface excess of gemini surfactants at the air-water interface, Langmuir.15 (1995) 43924396. 10.1021/la981551uSearch in Google Scholar

18. Fielden, M. L., And, P. M. C., and Verrall, R. E.: Investigating the adsorption of the gemini surfactant “12–2–12” onto mica using atomic force microscopy and surface force apparatus measurements, Langmuir.15 (1999) 39243934. 10.1021/la981342+Search in Google Scholar

19. Diamant, H. and Andelman, D.: Dimeric surfactants: a simplified model for the spacer chain, Langmuir.11 (1995) 36053606. 10.1021/la00009a055Search in Google Scholar

20. Tsubone, K., Arakawa, Y., and Rosen, M. J.: Structural effects on surface and micellar properties of alkanediyl-α,ω-bis-(sodium n-acyl-β-alaninate) gemini surfactants, J. Colloid Interface Sci.262 (2003) 516524. 10.1016/S0021-9797(03)00078-XSearch in Google Scholar PubMed

21. Liu, Q., Yuan, J., Li, Y., and Yao, S.: Long chained gemini surfactants for semipermanent wall coatings in capillary electrophoresis of proteins. Electrophoresis, 29 (2008)871–879. PMid:18297646; 10.1002/elps.200700391Search in Google Scholar PubMed

22. Camesano, T. A. and Nagarajan, R.: Micelle formation and cmc of gemini surfactants: a thermodynamic model, Colloids Surf A Physicochem Eng Asp.167 (2000) 165177. 10.1016/S0927-7757(99)00473-2Search in Google Scholar

23. Liu, L. and Rosen, M. J.: The interaction of some novel diquaternary gemini surfactants with anionic surfactants, J. Colloid Interface Sci.179 (1996) 454459. 10.1006/jcis.1996.0237Search in Google Scholar

24. Bakshi, M. S., Singh, J., Singh, K., and Kaur, G.: Mixed micelles of cationic 12–2–12 gemini with conventional surfactants: the head group and counterion effects, Colloids Surf A Physicochem Eng Asp.237 (2004) 6171. 10.1016/j.colsurfa.2004.01.030Search in Google Scholar

25. Zhao, J., And, S. D. C. and Fung, B. M.: Mixtures of monomeric and dimeric cationic surfactants, J. Phys. Chem. B.102 (1998) 76137618. 10.1021/jp982131gSearch in Google Scholar

26. Diamant, H. and Andelman, D.: Dimeric surfactants: spacer chain conformation and specific area at the air/water interface, Langmuir.10 (1994) 29102916. 10.1021/la00021a012Search in Google Scholar

27. Hattori, N., Hirata, H., Okabayashi, H., Furusaka, M., O'Connor, C. J. and Zana, R.: Small-angle neutron-scattering study of bis (quaternaryammonium bromide) surfactant micelles in water. Effect of the long spacer chain on micellar structure, Colloid.Polym.Sci.277 (1999) 95100. 10.1007/s003960050373Search in Google Scholar

28. Camesano, T. A. and Nagarajan, R.: Micelle formation and cmc of gemini surfactants: a thermodynamic model, Colloids Surf A Physicochem Eng Asp.167 (2000) 165177. 10.1016/S0927-7757(99)00473-2Search in Google Scholar

29. Hirata, H., Hattori, N., Ishida, M., Okabayashi, H., Frusaka, M. and Zana, R.: Small-angle neutron-scattering study of bis (quaternary ammonium bromide) surfactant micelles in water. effect of the spacer chain length on micellar structure, J. Phys. Chem.99 (2002) 1777817784. 10.1021/j100050a017Search in Google Scholar

30. Qi, H., Bai, Z., Zhang, Q. and Lai, X.: Synthesis of a gemini betaine surfactant and its properties as foam drainage agent, Tenside Surfact Det.55 (2018) 142147. 10.3139/113.110551Search in Google Scholar

31. Bakshi, M., Sachar, S., Mahajan, N., Kaur, I., Kaur, G., Singh, N., Sehgal, P., and Doe, H.: Mixed-micelle formation by strongly interacting surfactant binary mixtures: Effect of head-group modification, Colloid.Polym.Sci.280 (2002) 9901000. 10.1007/s00396-002-0717-9Search in Google Scholar

32. Rosen, M. J. and Kunjappu, J. T.: Surfactants and interfacial phenomena, 4th edition, Colloids & Surfaces.40 (2012) 347347. 10.1002/9781118228920Search in Google Scholar

33. Zana, R.: Alkanediyl-alpha, omega-bis (dimethylalkylammonium bromide) surfactants 10. behavior in aqueous solution at concentrations below the critical micellization concentration: an electrical conductivity study, J. Colloid Interface Sci.246 (2002) 182190. PMid:16290399; 10.1006/jcis.2001.7921Search in Google Scholar PubMed

34. YouY., ZhaoJ X., and JiangR.: Synthesis of quaternary ammonium salt Gemini surfactants and their micellization characteristics in oxyethylene chain. Fine Chemicals, 21 (2004) 571574. 10.13550/j.jxhg.2004.08.004Search in Google Scholar

35. GoddardE D.: Surfactants and interfacial phenomena, Colloids & Surfaces.40 (1989) 347347. 10.1016/0166-6622(89)80030-7Search in Google Scholar

36. Li, X., Hu, Z., Zhu, H., Zhao, S. and Cao, D.: Synthesis and properties of novel alkyl sulfonate gemini surfactants, J. Surfact. Deterg.13 (2010) 353359. 10.1007/s11743-010-1188-5Search in Google Scholar

37. Ao, M., Xu, G., Zhu, Y. and Bai, Y.: Synthesis and properties of ionic liquid-type gemini imidazolium surfactants, J. Colloid Interface Sci.326 (2008) 490495. PMid:18657824; 10.1016/j.jcis.2008.06.048Search in Google Scholar PubMed

38. TianD. M., WangJ. Y. and YuanY.: Determination of a Novel Bola Surfactant and Its Critical Micelle Concentration by Different Methods, Journal of Shenyang Normal University (Natural Science).34 (2016) 397401. 10.3969/j.issn.1673-5862.2016.04.004Search in Google Scholar

39. Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization, Langmuir.12 (1996) 12081211. 10.1021/la950691qSearch in Google Scholar

40. Yoshimura, T., Sakato, A., Tsuchiya, K., Ohkubo, T., Sakai, H., Abe, M., and Esumi, K.: Adsorption and aggregation properties of amino acid-based N-alkyl cysteine monomeric and N,N'-dialkyl cystine gemini surfactants, J. Colloid Interface Sci.308 (2007) 466473. PMid:17291521; 10.1016/j.jcis.2006.11.038Search in Google Scholar PubMed

41. ZhaoX. T., NiJ., and WangY. L.: Effects of linking groups on the interfacial tension and foaming properties of sulfonate-based Gemini surfactants. Acta Petrolei Sini-ca (Petroleum Processing), 27 (2011) 218223. 10.3969/j.issn.1001-8719.2011.02.011Search in Google Scholar

42. LiaoH., TangS. F., and LeiX. Y.: Research progress on the effect of linking groups on the performance of Gemini surfactants. Fine Chemicals21 (2013) 3942. 10.19482/j.cn11-3237.2013.08.017Search in Google Scholar

Received: 2018-07-03
Accepted: 2018-07-10
Published Online: 2019-05-06
Published in Print: 2019-05-15

© 2019, Carl Hanser Publisher, Munich

Downloaded on 29.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110615/html
Scroll to top button