Schiff' Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Medium
-
R. S. Abdel Hameed
Abstract
Three Schiff' bases (SB) were synthesized, characterized and evaluated as corrosion inhibitor for aluminum in 1.0 M HCl using chemical (weight loss) and electrochemical (open circuit potential, potentiodynamic polarization, and electrochemical impedance) techniques. The influence of temperature and concentration was investigated. It has been shown that the efficiency of corrosion inhibition increases with the inhibitor concentration and decreases with increasing temperature. The addition of the inhibitor molecules to the corrosive medium shifts the corrosion potential (Ecorr) to the nobler direction. It has been found that the adsorption of the used compounds obeys the Langmuir adsorption isotherm.
Kurzfassung
Es wurden drei Schiff'sche Basen (SB) synthetisiert, charakterisiert und als Korrosionsinhibitor für Aluminium in 1,0 M HCl unter Verwendung von chemischen (Gewichtsverlust) und elektrochemischen (Leerlaufpotential, potentiodynamische Polarisation und elektrochemische Impedanz) Techniken bewertet. Dabei wurde der Einfluss von Temperatur und Konzentration untersucht. Die Polarisationskurven machen deutlich, dass die inhibierende Wirkung der SB vom gemischten Typ ist. Die Zugabe der Inhibitormoleküle zum korrosiven Medium verschiebt das Korrosionspotential (Ecorr) in die edlere Richtung. Es wurde festgestellt, dass die Adsorption der verwendeten Verbindungen der Langmuir-Adsorptionsisotherme gehorcht.
References
1. Mohammed, A.Amin, Sayed S., Abd EI-Rehim, Essam E. F., El-Sherbini, Omar A., Hazzazi and MohsenN.: Abbas, Corr. Sci.51 (2009) 658–667. 10.1016/j.corsci.2008.12.008Suche in Google Scholar
2. Blurton, K. F. and Sammells, A. F.: J. Power Sources4 (1979) 263. 10.1016/0378-7753(79)80001Suche in Google Scholar
3. Hill, Julie-Anne, Markley, Tracey, Forsyth Maria, Howlett, PatrickC. and Hinton, Bruce R. W.: Journal of alloys and compounds, 509 (2011) 1683. 10.5006/1.3278465Suche in Google Scholar
4. Smallman, R. E. and Bishop, R. J.: Modern Physical Metallurgy and Materials Engineering, Elsevier Butterworth-Heinemann, 1999. 10.1016/B978-075064564-5/50012-4ch12Suche in Google Scholar
5. Schumacher, M.: Seawater Corrosion Handbook, William Andrew Publishing/Noyes, 1979. http://trove.nla.gov.au/version/10126624.ch2Suche in Google Scholar
6. Dabala, M., Ramous, E. and Magrini, M.: Materials and Corrosion55 (2004) 381–386,. 10.1002/maco.200303744Suche in Google Scholar
7. GommaG. K. and WahdanN. H.: J. Mater. Chem. Phys., 39, 209 (1995). 10.1016/j.arabjc.2010.08.020Suche in Google Scholar
8. OsmanM. M. and AbdelRehim S. S.: J. Mater. Chem. Phys., 53, 34 (1998). 10.1016/j.arabjc.2013.09.018Suche in Google Scholar
9. Abdallah, M. and El-Etre, A. Y.: Prot Met Phys Chemis Surf., 52, 1 (2016) 140–148,. 10.1134/S2070205116010020Suche in Google Scholar
10. GraneseS. L.: Corrosion, 44 (1988) 322–327. 10.5006/1.3583944Suche in Google Scholar
11. Mahgoub, F. M. and Nowaiser, F. M.: Prot. Met Phys Chem Surf, 47 (2011) 381. 10.1134/S2070205111030087Suche in Google Scholar
12. Abdel Hameed, R. S. and Al-Shafey, Hussin I: Ismail EA, Abd-Alhakeem H Abu-Nawwas, Int J Electrochem Sci.10 (2015) 2098–2109. http://creativecommons.org/licenses/by/4.0/:10-098Suche in Google Scholar
13. HukovicM. A., GrubacZ. and LisacE. S.: Corrosion, 50, 2 (1994) 146–151. 10.5006/1.3293503Suche in Google Scholar
14. MahmoudS. S. and El-MahdyG. A.: Corrosion, 53(6), 437 (1997) 437–439. 10.5006/1.3280486Suche in Google Scholar
15. Abdel Hameed, R. S., Ibrahim, Mohamed Mustafa and Abd-Alhakeem H.Abu-Nawwas: Journal of Organic Chemistry OCAIJ, 9, 12 (2013) 493–499. https://10:OCAIJ,9(12),2013Suche in Google Scholar
16. Lashgari, M., Arshadi, M. R. and Miandari, S.: Electrochim. Acta55 (2010) 6058–6063,. 10.1016/j.electacta.2010.05.066Suche in Google Scholar
17. Punita, Mourya, SitashreeBanerjee, Rashmi BalaRastogi and Madan MohanSingh, Inhibition of Mild Steel Corrosion in Hydrochloric and Sulfuric Acid Media Using a Thiosemicarbazone Derivative, Ind. Eng. Chem. Res., 52, 36 (2013) 12733–12747,. 10.1021/ie4012497Suche in Google Scholar
18. Abdullah, M., AL Jahdaly, B. A. and Al-Malyo, O. A.: Int. J. Electrochem Sci., 10 (2015) 2740–1754. https:10(2015)9808-9823Suche in Google Scholar
19. El-SherbiniE.E.Foad: Mater. Chem. Phy., 60 (1999) 286. 10.1016/j.apsusc.2006.08.001Suche in Google Scholar
20. ChandrabhanVerma and Quraishi, M. A.: Journal of the Association of Arab Universities for Basic and Applied Sciences22(2017) 55–61. http://creativecommons.org/licenses/by-nc-nd/4.0.Suche in Google Scholar
21. Trabanelli, G.: Whitney Award Lecture: Inhibitors – An Old Remedy for a New Challenge, CORROSION.47, 6 (1991) 410–419. 10.5006/1.3585271Suche in Google Scholar
22. Abdallah, M., Zaafarany, I., Al-Karanee, S. O. and Abd El-Fattah, A. A.: Antihypertensive drugs as an inhibitors for corrosion of aluminum and aluminum silicon alloys in aqueous solutions, Arabian Journal of Chemistry, 5 (2012) 225–234,. 10.1016/j.arabjc.2010.08.017Suche in Google Scholar
23. Abedin, S. Z. E.: Journal of Applied Electrochemistry, 31 (2001) 711–719. 10.1023/A:1017587911095Suche in Google Scholar
24. Gupta, R. K., Zhang, R., Davies, C. H. J. and N.BirbilisInfluence of Mg Content on the Sensitization and Corrosion of Al-xMg(-Mn) Alloys, CORROSION69, 11 (2013) 1081–1087. 10.5006/0948Suche in Google Scholar
25. Cabot, P. L., Centellas, F. A. and Garrido, J. A. et al.: J Appl Electrochem17 (1987) 807, 813. 10.1007/BF01007818Suche in Google Scholar
26. Abdel Hameed, R. S., El-Zomrawy, A., Abdallah, M., Abed El Rehim, S. S., AlShafey, H. I. and Nour Edin, Sh.: Polyoxyethylene stearate of molecular weight 6000 as corrosion inhibitor for mild steel in 2.0 M sulphuric acid, Int. J. Corros. Scale Inhib., 6, 2 (2017) 196–208, 2017–6–2–8. 10.17675/2305-6894Suche in Google Scholar
27. Abdel Hammed, R. S.: Advances in applied science research, 7, 2 (2016) 92–102, 10: 7,2. 10:2016www.pelagiaresearchlibrary.comSuche in Google Scholar
28. Al-Amiery, Ahmed A., AbdulAmir H.Kadhum, Alobaidy, AbdulHameed M., Abu BakarMohamad and Pua SohHoon: Novel Corrosion Inhibitor for Mild Steel in HCl, Materials, 7 (2014) 662–672. PMid:28788482; 10.3390/ma7020662Suche in Google Scholar PubMed PubMed Central
29. Kuznetsov, Yu I and Kazansky, L. P: Physicochemical aspects of metal protection by azoles as corrosion inhibitors, Russ. Chem. Rev.77 (2008) 219. 10.1070/RC2008v077n03ABEH003753Suche in Google Scholar
30. LiLiu, YingLi and FuhuiWang: Pitting mechanism on an austenite stainless steel nanocrystalline coating investigated by electrochemical noise and in-situ AFM analysis, Electrochimica Acta54 (2008) 768–780. 10.1016/j.electacta.2008.06.076Suche in Google Scholar
31. Lebrini, M., Robert, F., Lecante, A. and RoosC.: Corrosion Science53 (2011) 687. 10.1016/j.corsci.2010.10.006Suche in Google Scholar
32. Cortés, Joaquin, Valencia, Eliana, and Araya, Paulo: The Journal of Chemical Physics100 (1994) 7672–7681. 10.1063/1.466860Suche in Google Scholar
33. Abd El-Aziz S.Fouda, Safaa El-din H.Etaiw, Dina M. AbdEl-Aziz and Osama A.Elbaz: Synergistic Effect of Barium Chloride on Corrosion Inhibition of Copper by Aqueous Extract of Lupine Seeds in Nitric Acid, Int. J. Electrochem. Sci., 12 (2017) 5934–5950. 10.0964/2017.07.08Suche in Google Scholar
34. Abdel Hameed, R. S.: Ranitidine Drugs as Non-Toxic Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Medium, Portugaliae Electrochimica Acta, 29, 4(2011) 273–285. 10.4152/pea.201104273Suche in Google Scholar
35. Ruby, Thomas and Umapathy, M. J.: Solvent Free Synthesis of Four Cationic Surfactants: Evaluation of Their Corrosion Inhibition Properties on Zinc Phosphate Conversion Coating on Mild Steel, Tenside Surfactants Detergents, 52, 5 (2015) 396–405. 10.3139/113.110391Suche in Google Scholar
36. Muthukkumar, M., Rajavel, R., Venkatesh, G. and Vennila, P.: Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations, Tenside Surfactants Detergent, 54, 3 (2017) 248–259. 10.3139/113.110496Suche in Google Scholar
37. Mohammad, Mobin and Sheerin, Masroor: Experimental and Theoretical Study on Corrosion Inhibition of Mild steel in 20% Formic Acid Solution Using Schiff Base-Based Cationic Gemini Surfactant, Tenside Surfactants Detergents53, 2 (2016) 157–167. 10.3139/113.110421Suche in Google Scholar
38. Abdel Hameed, R. S.: Solvent Free Glycolysis of Plastic Waste as Green Corrosion Inhibitor for Carbon Steel in Sulfuric Acid, Journal of New Materials for Electrochemical Systems20 (2017) 141–149. 10.14447/jnmes.v20i3.272Suche in Google Scholar
39. Abdel Hameed, R. S.: Synthesis, characterization, and evaluation of some acyclic S-nucleosides of pyrazolo[3,4-d]pyrimidine-thiones as corrosion inhibitors for carbon steel in hydrochloric acid, Int. J. Corros. Scale Inhib., 6, 3 (2017) 333–348. 10.17675/2305-6894Suche in Google Scholar
40. AfzalShah, Azhar HussainShah, Shams-ul-Mahmood, Imdad Ullah, and Zia-ur-Rehman: Cost Effective Procedures for Extremely Efficient Synthesis of Environmental Friendly Surfactants. Tenside Surfactants Detergents, 50, 3 (2013) 160–168. 10.3139/113.110243Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Characteristic and Application of Anionic Dimeric Surfactants: A Review
- Body Care
- Reduction of Irritation Potential Caused by Anionic Surfactants in the Use of Various Forms of Collagen Derived from Marine Sources in Cosmetics for Children
- Environmental Chemistry
- Optimization of Biosorption Conditions for Surfactant Induced Decolorization by Anaerobic Sludge Granules
- Evaluation of Polyether Copolymer as Green Scale and Corrosion Inhibitor in Seawater
- Physical Chemistry
- Schiff' Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Medium
- Study on the Synergism of Binary Surfactant Mixtures containing N-lauroyl-N-methyl Taurine Sodium
- Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
- Study on the Complex System of Sodium Lauryl Diphenyl Ether Disulfonate and Dodecyl Dimethyl Hydroxyethyl Ammonium Chloride
- Synthesis
- Synthesis and Properties of 9,10-Dihydroxystearic Acid Ethoxylate
- Synthesis and Properties of Lauryl Phosphate Monoester
- Novel Surfactants
- Dehydroabietyl Glycidyl Ether Grafted Hydroxyethyl Chitosan: Synthesis, Characterization and Physicochemical Properties
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Characteristic and Application of Anionic Dimeric Surfactants: A Review
- Body Care
- Reduction of Irritation Potential Caused by Anionic Surfactants in the Use of Various Forms of Collagen Derived from Marine Sources in Cosmetics for Children
- Environmental Chemistry
- Optimization of Biosorption Conditions for Surfactant Induced Decolorization by Anaerobic Sludge Granules
- Evaluation of Polyether Copolymer as Green Scale and Corrosion Inhibitor in Seawater
- Physical Chemistry
- Schiff' Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Medium
- Study on the Synergism of Binary Surfactant Mixtures containing N-lauroyl-N-methyl Taurine Sodium
- Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
- Study on the Complex System of Sodium Lauryl Diphenyl Ether Disulfonate and Dodecyl Dimethyl Hydroxyethyl Ammonium Chloride
- Synthesis
- Synthesis and Properties of 9,10-Dihydroxystearic Acid Ethoxylate
- Synthesis and Properties of Lauryl Phosphate Monoester
- Novel Surfactants
- Dehydroabietyl Glycidyl Ether Grafted Hydroxyethyl Chitosan: Synthesis, Characterization and Physicochemical Properties