Dehydroabietyl Glycidyl Ether Grafted Hydroxyethyl Chitosan: Synthesis, Characterization and Physicochemical Properties
-
Ting Wang
Abstract
A series of novel polymeric nonionic surfactants based on water-soluble N,O-hydroxyethyl chitosan (N,O-HECTS) and dehydroabietyl glycidyl ether (DAGE), DAGE-g-N,O-HECTSs, were synthesized by an additive reaction between N,O-HECTS and DAGE. The structures of DAGE-g-N,O-HECTSs were characterized by FT-IR and 1H NMR. The substitution degree of hydroxyethylation (DSHE) of N,O-HECTS and the grafting degree (DG) of DAGE onto N,O-HECTS for DAGE-g-N,O-HECTSs were determined by elemental analysis. The surface activities of DAGE-g-N,O-HECTSs in aqueous solution were investigated by measuring the surface tension. The experimental results showed that the degree of grafting (DG) of DAGE-gN,O-HECTSs could have a significant impact on their critical micelle concentrations (CMCs) and surface tensions at the CMC (γCMC), but the DG of DAGE-g-N,O-HECTSs had almost no effect on the minimum of surface tensions (γmin). When using the DAGE-g-N,O-HECTSs as emulsifier, the increase in DG had a favorable influence on the stability of an emulsion of water and benzene. At a DG greater than 40.45%, the emulsifying power of DAGE-g-N,O-HECTS exceeded that of Tween-60.
Kurzfassung
Eine Reihe neuer nichtionischer Polymertenside (DAGE-g-N,O-HECTSs) auf der Basis von wasserlöslichem N,O-Hydroxyethylchitosan (N,O-HECTS) und Dehydroabietylglycidylether (DAGE) wurde durch Additionsreaktion zwischen N,O-HECTS und DAGE synthetisiert. Die Strukturen der DAGE-g-N,O-HECTSs wurden mittels FT-IR und 1H-NMR charakterisiert. Der Substitutionsgrad der Hydroxyethylierung (DSHE) von N,O-HECTS und der Pfropfgrad (DG) von DAGE auf N,O-HECTS für die DAGE-g-N,O-HECTSs wurden durch Elementaranalyse bestimmt. Die Oberflächenaktivitäten der DAGE-g-N,O-HECTSs in wässriger Lösung wurden durch Messung der Oberflächenspannung untersucht. Die experimentellen Ergebnisse zeigten, dass der Pfropfgrad DG von DAGE-g-N,O-HECTSs einen signifikanten Einfluss auf ihre kritischen Mizellenbildungskonzentrationen (CMCs) und auf die Oberflächenspannungen bei der CMC (γCMC) haben könnte, aber der DG von DAGE-g-N,O-HECTSs hatte nahezu keine Auswirkung auf das Minimum der Oberflächenspannungen (γmin). Bei der Verwendung der DAGE-g-N,O-HECTSs als Emulgatoren hatte die Erhöhung des DG einen günstigen Einfluss auf die Stabilität einer Emulsion aus Wasser und Benzen. Bei einem DG größer als 40,45% konnte die Emulgierkraft von DAGE-g-N,O-HECTS die von Tween-60 übertreffen.
References
1. Huo, M., Zou, A., Yao, C., Zhang, Y., Zhou, J., Wang, J., Zhu, Q., Li, J. and Zhang, Q.: Somatostatin receptor-mediated tumor-targeting drug delivery using octreotide-PEG-deoxycholic acid conjugate-modified N-deoxycholic acid-O,N-hydroxyethylation chitosan micelles; Biomaterials, 33 (2012) 6393–6407. 10.1016/j.biomaterials.2012.05.052Suche in Google Scholar PubMed
2. Rinaudo, M.: Chitin and chitosan: Properties and applications; Prog. Polym. Sci., 31 (2006) 603–632. 10.1016/j.progpolymsci.2006.06.001Suche in Google Scholar
3. Dash, M., Chiellini, F., Ottenbrite, R. M. and Chiellini, E.: Chitosan-A versatile semi-synthetic polymer in biomedical applications; Prog. Polym. Sci., 36 (2011) 981–1014. 10.1016/j.progpolymsci.2011.02.001Suche in Google Scholar
4. Kumar, R., Muzzarelli, M. N. V., Muzzarelli, R. A. A., Sashiwa, C. H. and Domb, A. J.: Chitosan chemistry and pharmaceutical perspectives; Chem. Rev., 104 (2004) 6017–6084. 10.1021/cr030441bSuche in Google Scholar PubMed
5. Nguyen, M. K. and Alsberg, E.: Bioactive factor delivery strategies from engineered polymerhydrogels for therapeutic medicine; Prog. Polym. Sci.39 (2014) 1235–1265. 10.1016/j.progpolymsci.2013.12.001Suche in Google Scholar PubMed PubMed Central
6. Liu, J., Huang, Y., Kumar, A., Tan, A., Jin, S., Mozhi, A. and Liang, X-J.: pH-Sensitive nano-systems for drug delivery in cancer therapy; Biotechnol. Adv., 32 (2014) 693–710. 10.1016/j.biotechadv.2013.11.009Suche in Google Scholar PubMed
7. Vitková, Z., Oremusová, J., Herdová, P., Vitko, A. and Ivanková, O.: Model Based Approach to Study of Release Kinetics of the Drug Chlorhexidine from Hydrogels; Tenside Surf. Det.52 (2015) 67–72. 10.3139/113.110350Suche in Google Scholar
8. Zhao, C., Nie, S., Tang, M. and SunS.: Polymeric pH-sensitive membranes – A review; Prog. Polym. Sci., 36 (2011) 1499–1520. 10.1016/j.progpolymsci.2011.05.004Suche in Google Scholar
9. Barikani, M.Oliaei, E., Seddiqi, H. and Honarkar, H.: Preparation and application of chitin and its derivatives: a review; Iran Polym. J., 23 (2014) 307–326. 10.1007/s13726-014-0225-zSuche in Google Scholar
10. Iwatsubo, T., Kishi, R., Miura, T., Ohzono, T. and Yamaguchi, T.: Formation of Hydroxyapatite Skeletal Materials from Hydrogel Matrices via Artificial Biomineralization; J. Phys. Chem. B, 119 (2015) 8793–8799. 10.1021/acs.jpcb.5b03181Suche in Google Scholar PubMed
11. Vílchez, S., Samitier, V., Porras, M., Esquena, J. and Erra, P.: Chitosan Hydrogels Covalently Crosslinked with a Natural Reagent; Tenside Surf. Det.46 (2009)13–17. 10.3139/113.110002Suche in Google Scholar
12. Li, B., Liu, B., Shan, C., Ibrahim, M., Lou, Y., Wang, Y., Xie, G., Li, H-Y. and Sun, G.: Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak; Pest Manag. Sci., 69 (2013) 312–320. 10.1002/ps.3399Suche in Google Scholar
13. Wibowo, S., Velazquez, G., Savant, V., and Torres, J. A.: Effect of chitosan type on protein and water recovery efficiency from surimi wash water treated with chitosan–alginate complexes; Bioresour. Technol., 98 (2007) 539–545. 10.1016/j.biortech.2006.02.014Suche in Google Scholar
14. Ashori, A., Raverty, W. D., Vanderhoek, N. and Ward, J. V.: Surface topography of kenaf (Hibiscus cannabinus) sized papers; Bioresour. Technol., 99 (2008) 404–410. 10.1016/j.biortech.2006.12.011Suche in Google Scholar
15. Li, Z., Zhuang, X.P., Liu, X.F.Guan, Y.L. and Yao, K.D.: Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from N,N-dimethylacetamide solution; Polymer, 43 (2002) 1541–1547. 10.1016/S0032-3861(01)00699-1Suche in Google Scholar
16. Kogan, G., Skorik, Y. A., Ingrid, I. Ž., Križková, L., Ďuračková, Z., Gomes, C.A.R.Yatluk, Y. and Krajčovič, J.: Antioxidant and antimutagenic activity of N-(2-carboxyethyl)chitosan; Toxicol Appl Pharmacol, 201 (2004) 303–310. 10.1016/j.taap.2004.05.009Suche in Google Scholar
17. Sajomsang, W., Tantayanon, S., Tangpasuthadol, V. and DalyW. H.: Quaternization of N-aryl chitosan derivatives: synthesis, characterization, and antibacterial activity; Carbohydr Res, 344 (2009) 2502–2511. 10.1016/j.carres.2009.09.004Suche in Google Scholar
18. Xu, Y., Du, Y., Huang, R. and Gao, L.: Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier; Biomaterials, 24 (2003) 5015–5022. 10.1016/S0142-9612(03)00408-3Suche in Google Scholar
19. Schatz, C., Bionaz, A., Lucas, J-M., Pichot, C., Viton, C., Domard, A. and DelairT.: Formation of Polyelectrolyte Complex Particles from Self-Complexation of N-Sulfated Chitosan; Biomacromolecules, 6 (2005) 1642–1647. 10.1021/bm049224qSuche in Google Scholar PubMed
20. Liu, X., Song, L., Li, L., Li, S. and Yao, K.: Antibacterial Effects of Chitosan and Its Water-Soluble Derivatives on E. coli, Plasmids DNA, and mRNA; J. Appl. Polym. Sci., 103 (2007) 3521–3528. 10.1002/app.25421Suche in Google Scholar
21. Liu, H., Zhao, Y., Cheng, S., Huang, N. and Leng, Y.: Syntheses of Novel Chitosan Derivative with Excellent Solubility, Anticoagulation, and Antibacterial Property by Chemical Modification; J. Appl. Polym. Sci., 124 (2012) 2641–2648. 10.1002/app.34889Suche in Google Scholar
22. Shao, K., Han, B., Dong, W., Liu, W. and Liu, W.: Pharmacokinetics and Biodegradation Performance of a Hydroxypropyl Chitosan Derivative; J. Ocean Univ. China, 14 (2015) 888–896. 10.1007/s11802-015-2600-6Suche in Google Scholar
23. Xu, X., Zhuang, X., Cheng, B., Xu, J., Long, G. and Zhang, H.: Manufacture and properties of cellulose/O-hydroxyethyl chitosan blend fibers; Carbohydr. Polym., 81 (2010) 541–544. 10.1016/j.carbpol.2010.03.011Suche in Google Scholar
24. Zhao, Y., Chen, J., Zeng, E., Hu, X., Liu, A. and DongY.: Synthesis and characterization of hydroxyethyl chitosan grafted by carboxyl ending DOVOB dendrimer: A novel liquid crystalline polymer; Carbohydr. Polym., 74 (2008) 828–833. 10.1016/j.carbpol.2008.04.042Suche in Google Scholar
25. Li, M., Han, B. and Liu, W.: Preparation and properties of a drug release membrane of mitomycin C with N-succinyl-hydroxyethyl chitosan; J Mater Sci: Mater Med, 22 (2011) 2745–2755. 10.1007/s10856-011-445-8Suche in Google Scholar
26. Huo, M., Liu, Y., Wang, L., Yin, T., Qin, C., Xiao, Y., Yin, L., Liu, J. and Zhou, J.: Redox-Sensitive Micelles Based on O,N-Hydroxyethyl Chitosan–Octylamine Conjugates for Triggered Intracellular Delivery of Paclitaxel; Mol. Pharmaceutics, 13 (2016) 1750–1762. 10.1021/acs.molpharmaceut.5b00696Suche in Google Scholar PubMed
27. Li, H., Huo, M., Zhou, J., Dai, Y., Deng, Y., Shi, X. and Masoud, J.: Enhanced Oral Absorption of Paclitaxel in N-Deoxycholic Acid-N, O-Hydroxyethyl Chitosan Micellar System; J. Pharm. Sci., 99 (2010) 4543–4553. 10.1002/jps.22159Suche in Google Scholar PubMed
28. Spinner, J. L., Oberoi, H. S., Yorgensen, Y. M., Poirier, D. S., Burkhart, D. J., Plante, M. and Evans, J. T.: Methylglycol chitosan and a synthetic TLR4 agonist enhance immuneresponses to influenza vaccine administered sublinguallyJustin; Vaccine, 33 (2015) 5845–5853. 10.1016/j.vaccine.2015.08.086Suche in Google Scholar PubMed PubMed Central
29. Jiang, S-M., Cai, Z-S., Chen, Z-D. and Xu, Q.: Synthesis of Dehydroabietyl Glycidyl Ether and Optimization of Synthetic Condition. Chem. World (Chinese), 55 (2014) 401–405. 10.19500/j.cnki.0367-6358.2014.08.011Suche in Google Scholar
30. Cai, Z-S., Jiang, S-M., Zhu, X-M., Zhang, H-H., Zhao, L-L., Yue, G-Y. and Shang, S-B.: (2-hydroxy-3-dehydroabieticoxy) propyl chitosan-oligosaccharide and preparation method thereof; Faming Zhuanli Shenqing Gongkai Shuomingshu (Chinese), (2016); CN 103965373 B.Suche in Google Scholar
31. Zhang, C., Ping, Q. and DingY.: Synthesis and Characterization of Chitosan Derivatives Carrying Galactose Residues; J. Appl. Polym. Sci., 97 (2005) 2161–2167. 10.1002/app.21975Suche in Google Scholar
32. Huang, R., Du, Y. and Yang, J.: Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan sulfates; Carbohydr. Polym., 51 (2003) 431–438. 10.1016/S0144-8617(02)00208-4Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Characteristic and Application of Anionic Dimeric Surfactants: A Review
- Body Care
- Reduction of Irritation Potential Caused by Anionic Surfactants in the Use of Various Forms of Collagen Derived from Marine Sources in Cosmetics for Children
- Environmental Chemistry
- Optimization of Biosorption Conditions for Surfactant Induced Decolorization by Anaerobic Sludge Granules
- Evaluation of Polyether Copolymer as Green Scale and Corrosion Inhibitor in Seawater
- Physical Chemistry
- Schiff' Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Medium
- Study on the Synergism of Binary Surfactant Mixtures containing N-lauroyl-N-methyl Taurine Sodium
- Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
- Study on the Complex System of Sodium Lauryl Diphenyl Ether Disulfonate and Dodecyl Dimethyl Hydroxyethyl Ammonium Chloride
- Synthesis
- Synthesis and Properties of 9,10-Dihydroxystearic Acid Ethoxylate
- Synthesis and Properties of Lauryl Phosphate Monoester
- Novel Surfactants
- Dehydroabietyl Glycidyl Ether Grafted Hydroxyethyl Chitosan: Synthesis, Characterization and Physicochemical Properties
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Characteristic and Application of Anionic Dimeric Surfactants: A Review
- Body Care
- Reduction of Irritation Potential Caused by Anionic Surfactants in the Use of Various Forms of Collagen Derived from Marine Sources in Cosmetics for Children
- Environmental Chemistry
- Optimization of Biosorption Conditions for Surfactant Induced Decolorization by Anaerobic Sludge Granules
- Evaluation of Polyether Copolymer as Green Scale and Corrosion Inhibitor in Seawater
- Physical Chemistry
- Schiff' Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Medium
- Study on the Synergism of Binary Surfactant Mixtures containing N-lauroyl-N-methyl Taurine Sodium
- Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
- Study on the Complex System of Sodium Lauryl Diphenyl Ether Disulfonate and Dodecyl Dimethyl Hydroxyethyl Ammonium Chloride
- Synthesis
- Synthesis and Properties of 9,10-Dihydroxystearic Acid Ethoxylate
- Synthesis and Properties of Lauryl Phosphate Monoester
- Novel Surfactants
- Dehydroabietyl Glycidyl Ether Grafted Hydroxyethyl Chitosan: Synthesis, Characterization and Physicochemical Properties