Effect of Alkyl Tail Length of Alpha Olefin Sulfonates on Foam Properties
-
Long Bai
, Yong Wang , Xiaochen Liu , Yawen Zhou and Jinping Niu
Abstract
The effect of alkyl tail length on the foam properties of alpha olefin sulfonates (AOS) in aqueous solutions at various concentrations was investigated by measurements of the foamability, foam stability and bubble size and numbers, obtained from conductivity and image analyses techniques based on FoamScan foam analyzer. It was found that foamability and foam stability of Cn AOS (n = 14–16, 16–18, 20–24) first increase and then decrease with increase in the carbon chain length, showing an optimum for a length of n = 16–18. The foamability and foam stability of AOS increase with increasing of surfactant concentration. This is due to the fact that the adsorbed quantity of surfactant molecules increases at the air/water interface with the increase of concentration. In addition, it was found that the bubble size produced by C16–18 AOS is smaller than that of C14–16 AOS.
Kurzfassung
Der Einfluss der Alkylkettenlänge auf die Schaumeigenschaften unterschiedlich konzentrierter wässriger Lösungen von α-Olefinsulfonaten (AOS) wurde anhand der Schäumbarkeit, Schaumstabilität und der Blasengröße und -zahlen untersucht. Diese Größen wurden mittels Leitfähigkeits- und Bildanalyseverfahren eines FoamScan-Schaumanalysators bestimmt. Es wurde gefunden, dass die Schaumbildungsfähigkeit und die Schaumstabilität von Cn AOS (n = 14–16, 16–18, 20–24) zuerst ansteigen und dann mit Zunahme der Kohlenstoffkettenlänge abnehmen, die optimale Länge liegt bei n = 16–18. Die Schäumbarkeit und Schaumstabilität von AOS nehmen mit zunehmender Tensidkonzentration zu. Dies liegt daran, dass die adsorbierte Menge an Tensidmolekülen an der Luft/Wasser-Grenzfläche mit steigender Konzentration zunimmt. Zusätzlich wurde gefunden, dass die Blasengröße, die durch C16–18 AOS erzeugt wird, kleiner ist als die von C14–16 AOS.
References
1. You, Y., Wu, X. N., Zhao, J. X., Ye, Y. Z. and Zou, W. S.: Effect of alkyl tail length of quaternary ammonium gemini surfactants on foaming properties, Colloids Surf. A.384 (2011) 164. 10.1016/j.colsurfa.2011.03.050Search in Google Scholar
2. Wang, J. L., Nguyen, A. V. and Farrokhpay, S.: A critical review of the growth, drainage and collapse of foams, Adv. Colloid Interface Sci.228 (2016) 55. PMid:26718078; 10.1016/j.cis.2015.11.009Search in Google Scholar PubMed
3. Schelero, N., Hedicke, G., Linse, P. and Klitzing, R. V.: Effects of counterions and co-ions on foam films stabilized by anionic dodecyl sulfate, J. Phys. Chem. B.114 (2010) 15523. PMid:21058691; 10.1021/jp1070488Search in Google Scholar PubMed
4. Wu, X. N., Zhao, J. X., Li, E. J. and Zou, W. S.: Interfacial dilational viscoelasticity and foam stability in quaternary ammonium gemini surfactant systems: influence of intermolecular hydrogen bonding, Colloid Polym. Sci.289 (2011) 1025. 10.1007/s00396-011-2425-9Search in Google Scholar
5. Wang, J., Liu, H. Q., Ning, Z. F. and Zhang, H. L.: Experimental research and quantitative characterization of nitrogen foam blocking characteristics, Energy Fuels26 (2012) 5152. 10.1021/ef300939jSearch in Google Scholar
6. Tamura, T., Takeuchi, Y. and Kaneko, Y.: Influence of surfactant structure on the drainage of nonionic surfactant foam films, J. Colloid Interface Sci.206 (1998) 112. PMid:9761634; 10.1006/jcis.1998.5700Search in Google Scholar PubMed
7. Stubenrauch, C. and Khristov, K.: Foams and foam films stabilized by Cn TAB: Influence of the chain length and of impurities, J. Colloid Interface Sci.286 (2005) 710. PMid:15897089; 10.1016/j.jcis.2005.01.107Search in Google Scholar PubMed
8. Tan, S. N., Fornasiero, D., Sedev, R. and Ralston, J.: The role of surfactant structure on foam behaviour, Colloids Surf. A.263 (2005) 233. 10.1016/j.colsurfa.2004.12.060Search in Google Scholar
9. Beneventi, D., Carre, B. and Gandini, A.: Role of surfactant structure on surface and foaming properties, Colloids Surf. A.189 (2001) 65. 10.1016/S0927-7757(01)00602-1Search in Google Scholar
10. Carey, E. and Stubenrauch, C.: Foaming properties of mixtures of a non-ionic (C12DMPO) and an ionic surfactant (C12TAB), J. Colloid Interface Sci.346 (2010) 414. PMid:20382396; 10.1016/j.jcis.2010.03.013Search in Google Scholar PubMed
11. Hu, X. Y., Li, Y., He, X. J., Li, C. X., Li, Z. Q., Cao, X. L. and Xin, X., SomasundaranP.: structure-behavior-property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches, J. Phys. Chem. B.116 (2012) 160. PMid:22136447; 10.1021/jp205753wSearch in Google Scholar PubMed
12. Carey, E. and Stubenrauch, C.: Properties of aqueous foams stabilized by dodecyltrimethylammonium bromide, J. Colloid Interface Sci.333 (2009) 619. PMid:19268300; 10.1016/j.jcis.2009.02.038Search in Google Scholar PubMed
13. Lunkenheimer, K. and Malysa, K.: A simple automated method of quantitative characterization of foam behaviour, Polym. Int.52 (2003) 536. 10.1002/pi.1105Search in Google Scholar
14. Ropers, M. H., Novales, B., Boué, F. and Axelos, M. A. V.: Polysaccharide/Surfactant complexes at the air-water interface-effect of the charge density on interfacial and foaming behaviors, Langmuir24 (2010) 12849. PMid:18950205; 10.1021/la802357mSearch in Google Scholar PubMed
15. Rosen, M. J. and Kunjappu, J. T.: Surfactants and interfacial phenomena, 4th Edition, Colloids Surf.40 (2012) 347. 10.1002/9781118228920Search in Google Scholar
16. Wang, Y., Liu, X. C., Bai, L. and Niu, J. P.: Influence of alkyl chain length of alpha olefin sulfonates on surface and interfacial properties, J. Dispersion Sci. Technol.19 (2016) 1215. 10.1080/01932691.2017.1281144Search in Google Scholar
17. Wang, Y., Liu, X. C., Zhou, Y. W. and Niu, J. P.: Influence of hydrocarbon chain branching on foam properties of olefin sulfonate with foamScan, J. Surfactants Deterg.19 (2016) 1. 10.1007/s11743-016-1872-1Search in Google Scholar
18. Barik, T. K. and Roy, A.: Statistical distribution of bubble size in wet foam, Chem. Eng. Sci.64 (2009) 2039. 10.1016/j.ces.2009.01.039Search in Google Scholar
19. Weaire, D. and Hutzler, S.: Nonlinear phenomena in soap froth, Phys. A. (Amsterdam, Neth.)257 (1998) 264. 10.1016/S0378-4371(98)00145-9Search in Google Scholar
20. Farajzadeh, R., Krastev, R. and Zitha, P. L. J.: Gas Permeability of foam films stabilized by an α-Olefin sulfonate surfactant, Langmuir25 (2009) 2881. PMid:19437763; 10.1021/la803599zSearch in Google Scholar PubMed
21. Tcholakova, S., Mitrinova, Z., Golemanov, K., Denkov, N. D., Vethamuthu, M. and Ananthapadmanabhan, K. P.: Control of ostwald ripening by using surfactants with high surface modulus, Langmuir27 (2011) 14807. PMid:22059389; 10.1021/la203952pSearch in Google Scholar PubMed
22. Pugh, R. J.: Foaming, foam films, antifoaming and defoaming, Adv. Colloid Interface Sci.64 (1996) 67. 10.1016/0001-8686(95)00280-4Search in Google Scholar
© 2018, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents/Inhalt
- Short Communication
- Obsolescence of Large Household Appliances in Germany
- Review Article
- Quaternary Alkylammonium Salts as Cleaning and Disinfectant Agents
- Application
- Effect of N-dodecyl-N-(propylpiperydinium-3-sulfonate) on Usage Properties of Liquid Soaps for Sensitive Skin
- Surfactant Analysis
- Characterization of Tween® Surfactants by MALDI TOF-MS and High Performance Liquid Chromatography in a Ternary Mobile Phase
- Novel Surfactants
- Hyperbranched Polyamidoamine Surfactants: Synthesis, Characterization and Evaluation as Biocides
- Fermentative Production of Sophorolipid and Purification by Adsorption Chromatography
- Physical Chemistry
- A Comparison Study on the Phase Behavior and Solubilization between Cn(Bim)2-2Br-Butyric Acid and CnmimBr-Butyric Acid Microemulsion Systems
- Effect of Alkyl Tail Length of Alpha Olefin Sulfonates on Foam Properties
- Impact of Spacer and Hydrophobic Tail on Interfacial and Rheological Properties of Cationic Amido-Amine Gemini Surfactants for EOR Application
- Environmental Chemistry
- Role of Surfactants Cetyl Pyridinium Chloride (CPC) and Cetyltrimethyl Ammonium Bromide (CTAB) in the Reverse Micellar Extraction of Ternary Mixture of Acid Dyes from Textile Effluent
Articles in the same Issue
- Contents/Inhalt
- Contents/Inhalt
- Short Communication
- Obsolescence of Large Household Appliances in Germany
- Review Article
- Quaternary Alkylammonium Salts as Cleaning and Disinfectant Agents
- Application
- Effect of N-dodecyl-N-(propylpiperydinium-3-sulfonate) on Usage Properties of Liquid Soaps for Sensitive Skin
- Surfactant Analysis
- Characterization of Tween® Surfactants by MALDI TOF-MS and High Performance Liquid Chromatography in a Ternary Mobile Phase
- Novel Surfactants
- Hyperbranched Polyamidoamine Surfactants: Synthesis, Characterization and Evaluation as Biocides
- Fermentative Production of Sophorolipid and Purification by Adsorption Chromatography
- Physical Chemistry
- A Comparison Study on the Phase Behavior and Solubilization between Cn(Bim)2-2Br-Butyric Acid and CnmimBr-Butyric Acid Microemulsion Systems
- Effect of Alkyl Tail Length of Alpha Olefin Sulfonates on Foam Properties
- Impact of Spacer and Hydrophobic Tail on Interfacial and Rheological Properties of Cationic Amido-Amine Gemini Surfactants for EOR Application
- Environmental Chemistry
- Role of Surfactants Cetyl Pyridinium Chloride (CPC) and Cetyltrimethyl Ammonium Bromide (CTAB) in the Reverse Micellar Extraction of Ternary Mixture of Acid Dyes from Textile Effluent