Home A Comparison Study on the Phase Behavior and Solubilization between Cn(Bim)2-2Br-Butyric Acid and CnmimBr-Butyric Acid Microemulsion Systems
Article
Licensed
Unlicensed Requires Authentication

A Comparison Study on the Phase Behavior and Solubilization between Cn(Bim)2-2Br-Butyric Acid and CnmimBr-Butyric Acid Microemulsion Systems

  • Dan Qin , Jiao Wang , Hao Sun , Miaomiao Song and Jinling Chai
Published/Copyright: November 16, 2018
Become an author with De Gruyter Brill

Abstract

The solubility, interfacial composition and solubilization ability of microemulsions containing gemini 1,4-bis(3-alkylimidazolium-1-yl) butane bromide [Cn(Bim)2-2Br]/butyric acid were studied and compared with that of microemulsions containing 1-alkyl-3-methylimidazolium (CnmimBr)/butyric acid. The solubilities of butyric acid (SA), and the mass fractions of butyric acid in the interfacial layer(AS) decrease, while the solubilization parameters (SP*) increase with the increase in the carbon chain length of the surfactants in Cn(Bim)2-2Br based and CnmimBr based microemulsions. A comparison of the gemini Cn(Bim)2-2Br microemulsions with CnmimBr microemulsions indicates that the values of SA and AS are in the order: Cn(Bim)2-2Br < CnmimBr, while SP* values are Cn(Bim)2-2Br > CnmimBr. With salinity increasing, the values of SA and AS decrease, while SP* values increase. With the increase in the alkyl chain length of the oil molecules, the SA values increase, AS and SP* values decrease. Temperature has less influence on the values of SA, AS and SP* of microemulsions containing Cn(Bim)2-2Br/butyric acid.

Kurzfassung

Die Löslichkeit, Grenzflächenzusammensetzung und Solubilisierungsfähigkeit von Gemini-1,4-Bis-(3-alkylimidazolium-1-yl)-butanbromid [Cn(Bim)2-2Br]/Buttersäure enthaltenden Mikroemulsionen wurden untersucht und mit den Parametern von Mikroemulsionen aus 1-Alkyl-3-methylimidazolium (CnmimBr)/Buttersäure verglichen. Die Löslichkeit von Buttersäure (SA) und die Massenanteile von Buttersäure in der Grenzflächenschicht (AS) nehmen ab, während die Solubilisierungsparameter (SP*) mit der Zunahme der Kohlenstoffkettenlänge der Tenside in den Mikroemulsionen auf Basis von Cn(Bim)2-2Br bzw. CnmimBr ansteigen. Ein Vergleich der Gemini-Cn(Bim)2-2Br-Mikroemulsionen mit den CnmimBr-Mikroemulsionen zeigt, dass die Werte von SA und AS in der Reihenfolge Cn(Bim)2-2Br < CnmimBr liegen, während SP*-Werte Cn(Bim)2-2Br > CnmimBr sind. Bei steigendem Salzgehalt sinken die Werte von SA und AS, während die SP*-Werte ansteigen. Mit der Zunahme der Alkylkettenlänge der Ölmoleküle steigen die SA-Werte, die AS- und SP*-Werte sinken. Die Temperatur hat weniger Einfluss auf die SA-, AS- und SP*-Werte der Cn(Bim)2-2Br/Buttersäure-Mikroemulsionen.


*Correspondence address, Prof. Dr. Jinling Chai, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China, E-mail:

Dan Qin, born in 1994, Shandong Province of China, is an undergraduate student of Shandong Normal University. Her major interest is chemistry education.

Jiao Wang, born in 1994, Shandong Province of China, is an Msc candidate of Shandong Normal University. Her interest of research is the properties and applications of surfactants.

Hao Sun, born in 1985, Shandong province of China, is an Msc candidate of Shandong Normal University. His interest of research is physical chemistry of surfactant solutions.

Miaomiao Song, born in 1994, Shandong Province of China, is an Msc candidate of Shandong Normal University. Her interest of research is the phase behavior and the maximum solubilization capacity of microemulsions.

Jinling Chai, born in 1961, Shandong Province of China, is a chemistry professor. He studied solvent extraction from 1985 to 1988 in Shandong University and got an Msc degree in 1988. In 1988–1999, he worked in department of chemistry, Shandong Normal University, teaching physical chemistry. He was a PhD candidate in Shandong University in 2000–2003 and obtained a PhD degree in 2003. Since 2003, he has worked in Shandong Normal University, researching physical chemistry of surfactant solutions. Special fields of interest are Physicochemical properties and applications of surfactant aggregates.


References

1. Menger, F. M. and Keiper, J. S.: Gemini Surfactants, Angew. Chem. Int. Edit.39 (2000) 19061920. 10.1002/1521-3773(20000602)39:11<3C1906::AID-ANIE1906>3.0.CO;2-QSearch in Google Scholar

2. Xie, Y. C., Liu, J. J., Liu, F. and Xu, H. J.: Synthesis and properties of a novel gemini surfactant with bis-piperidinium, Tenside Surfact. Det.54 (2017) 437442. 10.3139/113.110521Search in Google Scholar

3. Chai, J. L., Sun, B., Chai, Z. Q., Liu, N., Pan, J. and Lu, J. J.: Comparisions of the effects of temperature on the W/O microemulsions formed by alkyl imidazole gemini and imidazole ionic liquids type surfactants, J. Dispersion Sci. Technol.38 (2017) 967972. 10.1080/01932691.2016.1216439Search in Google Scholar

4. Maithufi, M. N., Joubert, D. J. and Klumperman, B.: Application of gemini surfactants as diesel fuel wax dispersants, Energ. Fuel.25 (2015) 162171. 10.1021/ef1006287Search in Google Scholar

5. Ao, M.Q., Huang, P.P., Xu, G.Y., Yang, X.D. and Wang, Y.J.: Aggregation and thermodynamic properties of ionic liquid-type gemini imidazolium surfactants with different spacer length, Colloid Polym. Sci.287 (2009) 395402. 10.1007/s00396-008-1976-xSearch in Google Scholar

6. Ren, C. C., Wang, F., Zhang, Z. Q., Nie, H. H., Li, N. and Cui, M.: Synthesis, surface activity and aggregation behavior of Gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide, Colloid Surf. A.467 (2015) 18. 10.1016/j.colsurfa.2014.11.031Search in Google Scholar

7. Chai, J. L., Zhang, H. M., Liu, N., Liu, N. N., Chai, H. H. and Liu, Z. C.: Comparison between phase behavior of gemini imidazoliums and monomeric ionic liquid surfactants in W/O microemulsion systems, J. Dispersion Sci. Technol.36 (2015) 129135. 10.1080/01932691.2014.890108Search in Google Scholar

8. Chai, J. L., SongJ. W., Wang, D., Chai, H. H., Bai, T. T. and Liu, N.: Comparison of the composition and structural parameters of W/O microemulsions containing Gemini imidazoliums with those containing monomeric analogues, J. Surfact. Deterg.18 (2015) 287295. 10.1007/s11743-014-1648-4Search in Google Scholar

9. Wang, D., Li, H. L., Chai, J. L., Liao, Q. S. and Sun, H.: Phase behavior and solubilization of microemulsion systems containing Gemini imidazoliums and their monomeric analogues, Colloid Polym. Sci.291 (2013) 24292437. 10.1007/s00396-013-2975-0Search in Google Scholar

10. Zhu, M. L., Chai, J. L., Chen, L. S., Xu, L., Liu, W., Shang, S. C. and Lu, J. J.: Synergetic effect of cationic surfactive ionic liquid C12mimBr and anionic surfactant SDBS on the phase behavior and solubilization of microemulsions, Fluid Phase Equilib.314 (2012) 9094. 10.1016/j.fluid.2011.10.023Search in Google Scholar

11. Chai, J. L., Xu, L., Liu, W. and Zhu, M. L.: Comparison of the phase behavior and thermodynamic properties between ionic liquid-oil and water-oil microemulsion systems, J. Chem. Eng. Data57 (2012) 23942400. 10.1021/je3000537Search in Google Scholar

12. Chen, L. F., Shang, Y. Z., Liu, H. L. and Hu, Y.: Middle-phase microemulsion induced by brine in region of low cationic Gemini surfactant content, Colloid surf. A305 (2007) 2935. 10.1016/j.colsurfa.2007.04.037Search in Google Scholar

13. Wang, M. M., Du, N., Zhong, Y. H. and Huang, X. R.: Additive effects on the phase behavior of cationic surfactant ([C16mim]Br) stabilized hydrophobic ionic liquid based middle-phase microemulsions, J. Chem. Eng. Data62 (2017) 878884. 10.1021/acs.jced.6b00956Search in Google Scholar

14. Chai, J. L., Liu, N. N., Liu, N., Zhang, H. M., Chai, H. H. and LiuZ. C.: Synergistic interactions in mixed W/O microemulsions of cationic gemini and anionic surfactants, Tenside Surfact. Det.51 (2014) 528532. 10.3139/113.110339Search in Google Scholar

15. Liu, Z. C., Chai, J. L., Chai, Z. Q., Liu, N. N., Chai, H. H. and ZhangH. M.: Interfacial composition, solubility, and solubilization capacity of microemulsions containing cationic Gemini and anionic surfactants, J. Chem. Eng. Data59 (2014) 22302234. 10.1021/je500182zSearch in Google Scholar

16. Chai, J. L., Pan, J., Chen, J. F., Sun, B. and Lu, J. J.: Phase equilibria, interfacial, and bulk compositions of microemulsions containing short-chain alcohols studied by an optimum microemulsion dilution method, Colloid Polym. Sci.295 (2017) 18351842. 10.1007/s00396-017-4146-1Search in Google Scholar

17. Graaica, A., Laahcise, J., Cucophat, C., Bourrel, M. and Salager, J. L.: Improving solubilization in microemulsions with additives. 2. Long chain alkanols as lipophilic linkers, Langmuir9 (2002) 33713374. 10.1021/la00036a008Search in Google Scholar

18. Moreira, L. A. and Firoozabadi, A.: Thermodynamic modeling of the duality of linear 1-alcohols as cosurfactants and cosolvents in self-assembly of surfactant molecules, Langmuir25 (2009) 1210112113. PMid:19670831; 10.1021/la9018426Search in Google Scholar PubMed

19. Chaghi, R., de Ménorval, L. C., Charnay, C. and Zajac, J.: Competitive interactions between components in surfactant-cosurfactant-additive systems, J. Colloid Interface Sci.344 (2010) 402409. PMid:20110091; 10.1016/j.jcis.2009.12.064Search in Google Scholar PubMed

20. Lohateeraparp, P., Wilairuengsuwan, P., Saiwan, C., Sabatini, D. A. and Harwell, J. H.: Study of alcohol-free microemulsion systems containing fatty acids as cosurfactants, J. Surfactants Deterg.6 (2003) 1524. 10.1007/s11743-003-0243-8Search in Google Scholar

21. Li, X. Q., Chai, J. L., Shang, S. C., Li, H. L., Lu, J. J., Yang, B. and Wu, Y. T.: Phase behavior of alcohol-free microemulsion systems containing butyric acid as a cosurfactant, J. Chem. Eng. Data.55 (2010) 32243228. 10.1021/je100060tSearch in Google Scholar

22. Chai, J. L., Chai, H. H., Sun, H., Liu, N., Liu, N. N., ZhangH. M. and Liu, Z. C.: Phase behavior and solubilization of microemulsion systems containing imidazolium type surfactant CnmimBr and butyric acid as cosurfactant, Tenside Surf. Det.51 (2014) 421426. 10.3139/113.110324Search in Google Scholar

23. Butt, U., Elshaer, A., Las, S., Al-Kinani, A. A., Le, G. A. and Alany, R. G.: Fatty acid based microemulsions to combat ophthalmia neonatorum caused by neisseria gonorrhoeae and staphylococcus aureus, Nanomaterials8 (2018) 122. 10.3390/nano8010051Search in Google Scholar PubMed PubMed Central

24. Noirjean, C., Testard, F., Dejugnat, C., Jestin, J. and Carriere, D.: Molten fatty acid based microemulsions, Phys. Chem. Chem. Phys.18 (2016) 1591115918. PMid:27241163; 10.1039/C6CP00533KSearch in Google Scholar

25. Branco, L., Ramos, R. J. N. and Afonso, J. J. M.: Preparation and characterization of new room temperature ionic liquids, Chem. Eur. J.8 (2002) 36713677. 10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9Search in Google Scholar

26. Fang, D., Cheng, J., Gong, K., Shi, Q. R., Zhou, X. L. and Liu, Z. L.: A green and novel procedure for the preparation of ionic liquid, J. Fluor. Chem.129 (2008) 108111. 10.1016/j.jfluchem.2007.09.004Search in Google Scholar

27. Hou, N., Chai, J. L., ZhangJ. Q., SongJ. W., ZhangY. and LuJ. J.: Application of ∊-β fishlike phase diagrams on the microemulsion solubilizations of dense nonaqueous phase liquids, Fluid Phase Equilibr.412 (2016) 211217. 10.1016/j.fluid.2015.12.024Search in Google Scholar

28. Chen, L. S., Pan, J., Sun, B., Zhang, X. Y., Cui, X. C., Lu, J. J. and Chai, J. L.: Phase behavior and solubilization of microemulsions containing C16 mimBr with different oil-water ratios. Tenside Surfact. Det.54 (2017) 419426. 10.3139/113.110518Search in Google Scholar

29. Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Adv. Colloid Interface Sci.97 (2002) 205253. 10.1016/S0001-8686(01)00069-0Search in Google Scholar

30. Chai, J. L., Sun, H., Li, X. Q., Chen, L. S., Yang, B. and Wu, Y. T.: Effect of inorganic salts on the phase behavior of microemulsion systems containing sodium dodecyl sulfate, J. Dispersion Sci. Technol.33 (2012) 14701474. 10.1080/01932691.2011.620831Search in Google Scholar

31. Lu, J. J., Pan, J., Chai, J. L., Zhu, M. L., Chai, Z. Q., Zhang, X. Y. and Cui, X. C.: Interfacial composition and solubilization of microemulsionsyms containing mixed surfactants C12mimBr and Brij35: effects of surfactant composition, temperature, and salinity, Colloid Polym. Sci.296 (2018) 11871194. 10.1007/s00396-018-4334-7Search in Google Scholar

32. Garti, N., Aserin, A., Ezrahi, S. and Wachtel, E.: Water solubilization and chain length compatibility in nonionic microemulsion, J. Colloid Interface Sci.169 (1995) 428435. 10.1006/jcis.1995.1053Search in Google Scholar

33. Zhang, Y., Zhang, X. Y., Chai, J. L., Cui, X. C., Pan, J., Song, J. W., Sun, B. and Lu, J. J.: The phase behavior and solubilization of isopropyl myristate in microemulsions containing hexadecyl trimethyl ammonium bromide and sodium dodecyl sulfate, J. Mol. Liq.244 (2017) 262268. 10.1016/j.molliq.2017.08.074Search in Google Scholar

Received: 2018-02-11
Accepted: 2018-06-06
Published Online: 2018-11-16
Published in Print: 2018-11-16

© 2018, Carl Hanser Publisher, Munich

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110588/html
Scroll to top button