A Comparison Study on the Phase Behavior and Solubilization between Cn(Bim)2-2Br-Butyric Acid and CnmimBr-Butyric Acid Microemulsion Systems
-
Dan Qin
Abstract
The solubility, interfacial composition and solubilization ability of microemulsions containing gemini 1,4-bis(3-alkylimidazolium-1-yl) butane bromide [Cn(Bim)2-2Br]/butyric acid were studied and compared with that of microemulsions containing 1-alkyl-3-methylimidazolium (CnmimBr)/butyric acid. The solubilities of butyric acid (SA), and the mass fractions of butyric acid in the interfacial layer(AS) decrease, while the solubilization parameters (SP*) increase with the increase in the carbon chain length of the surfactants in Cn(Bim)2-2Br based and CnmimBr based microemulsions. A comparison of the gemini Cn(Bim)2-2Br microemulsions with CnmimBr microemulsions indicates that the values of SA and AS are in the order: Cn(Bim)2-2Br < CnmimBr, while SP* values are Cn(Bim)2-2Br > CnmimBr. With salinity increasing, the values of SA and AS decrease, while SP* values increase. With the increase in the alkyl chain length of the oil molecules, the SA values increase, AS and SP* values decrease. Temperature has less influence on the values of SA, AS and SP* of microemulsions containing Cn(Bim)2-2Br/butyric acid.
Kurzfassung
Die Löslichkeit, Grenzflächenzusammensetzung und Solubilisierungsfähigkeit von Gemini-1,4-Bis-(3-alkylimidazolium-1-yl)-butanbromid [Cn(Bim)2-2Br]/Buttersäure enthaltenden Mikroemulsionen wurden untersucht und mit den Parametern von Mikroemulsionen aus 1-Alkyl-3-methylimidazolium (CnmimBr)/Buttersäure verglichen. Die Löslichkeit von Buttersäure (SA) und die Massenanteile von Buttersäure in der Grenzflächenschicht (AS) nehmen ab, während die Solubilisierungsparameter (SP*) mit der Zunahme der Kohlenstoffkettenlänge der Tenside in den Mikroemulsionen auf Basis von Cn(Bim)2-2Br bzw. CnmimBr ansteigen. Ein Vergleich der Gemini-Cn(Bim)2-2Br-Mikroemulsionen mit den CnmimBr-Mikroemulsionen zeigt, dass die Werte von SA und AS in der Reihenfolge Cn(Bim)2-2Br < CnmimBr liegen, während SP*-Werte Cn(Bim)2-2Br > CnmimBr sind. Bei steigendem Salzgehalt sinken die Werte von SA und AS, während die SP*-Werte ansteigen. Mit der Zunahme der Alkylkettenlänge der Ölmoleküle steigen die SA-Werte, die AS- und SP*-Werte sinken. Die Temperatur hat weniger Einfluss auf die SA-, AS- und SP*-Werte der Cn(Bim)2-2Br/Buttersäure-Mikroemulsionen.
References
1. Menger, F. M. and Keiper, J. S.: Gemini Surfactants, Angew. Chem. Int. Edit.39 (2000) 1906–1920. 10.1002/1521-3773(20000602)39:11<3C1906::AID-ANIE1906>3.0.CO;2-QSearch in Google Scholar
2. Xie, Y. C., Liu, J. J., Liu, F. and Xu, H. J.: Synthesis and properties of a novel gemini surfactant with bis-piperidinium, Tenside Surfact. Det.54 (2017) 437–442. 10.3139/113.110521Search in Google Scholar
3. Chai, J. L., Sun, B., Chai, Z. Q., Liu, N., Pan, J. and Lu, J. J.: Comparisions of the effects of temperature on the W/O microemulsions formed by alkyl imidazole gemini and imidazole ionic liquids type surfactants, J. Dispersion Sci. Technol.38 (2017) 967–972. 10.1080/01932691.2016.1216439Search in Google Scholar
4. Maithufi, M. N., Joubert, D. J. and Klumperman, B.: Application of gemini surfactants as diesel fuel wax dispersants, Energ. Fuel.25 (2015) 162–171. 10.1021/ef1006287Search in Google Scholar
5. Ao, M.Q., Huang, P.P., Xu, G.Y., Yang, X.D. and Wang, Y.J.: Aggregation and thermodynamic properties of ionic liquid-type gemini imidazolium surfactants with different spacer length, Colloid Polym. Sci.287 (2009) 395–402. 10.1007/s00396-008-1976-xSearch in Google Scholar
6. Ren, C. C., Wang, F., Zhang, Z. Q., Nie, H. H., Li, N. and Cui, M.: Synthesis, surface activity and aggregation behavior of Gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide, Colloid Surf. A.467 (2015) 1–8. 10.1016/j.colsurfa.2014.11.031Search in Google Scholar
7. Chai, J. L., Zhang, H. M., Liu, N., Liu, N. N., Chai, H. H. and Liu, Z. C.: Comparison between phase behavior of gemini imidazoliums and monomeric ionic liquid surfactants in W/O microemulsion systems, J. Dispersion Sci. Technol.36 (2015) 129–135. 10.1080/01932691.2014.890108Search in Google Scholar
8. Chai, J. L., SongJ. W., Wang, D., Chai, H. H., Bai, T. T. and Liu, N.: Comparison of the composition and structural parameters of W/O microemulsions containing Gemini imidazoliums with those containing monomeric analogues, J. Surfact. Deterg.18 (2015) 287–295. 10.1007/s11743-014-1648-4Search in Google Scholar
9. Wang, D., Li, H. L., Chai, J. L., Liao, Q. S. and Sun, H.: Phase behavior and solubilization of microemulsion systems containing Gemini imidazoliums and their monomeric analogues, Colloid Polym. Sci.291 (2013) 2429–2437. 10.1007/s00396-013-2975-0Search in Google Scholar
10. Zhu, M. L., Chai, J. L., Chen, L. S., Xu, L., Liu, W., Shang, S. C. and Lu, J. J.: Synergetic effect of cationic surfactive ionic liquid C12mimBr and anionic surfactant SDBS on the phase behavior and solubilization of microemulsions, Fluid Phase Equilib.314 (2012) 90–94. 10.1016/j.fluid.2011.10.023Search in Google Scholar
11. Chai, J. L., Xu, L., Liu, W. and Zhu, M. L.: Comparison of the phase behavior and thermodynamic properties between ionic liquid-oil and water-oil microemulsion systems, J. Chem. Eng. Data57 (2012) 2394–2400. 10.1021/je3000537Search in Google Scholar
12. Chen, L. F., Shang, Y. Z., Liu, H. L. and Hu, Y.: Middle-phase microemulsion induced by brine in region of low cationic Gemini surfactant content, Colloid surf. A305 (2007) 29–35. 10.1016/j.colsurfa.2007.04.037Search in Google Scholar
13. Wang, M. M., Du, N., Zhong, Y. H. and Huang, X. R.: Additive effects on the phase behavior of cationic surfactant ([C16mim]Br) stabilized hydrophobic ionic liquid based middle-phase microemulsions, J. Chem. Eng. Data62 (2017) 878–884. 10.1021/acs.jced.6b00956Search in Google Scholar
14. Chai, J. L., Liu, N. N., Liu, N., Zhang, H. M., Chai, H. H. and LiuZ. C.: Synergistic interactions in mixed W/O microemulsions of cationic gemini and anionic surfactants, Tenside Surfact. Det.51 (2014) 528–532. 10.3139/113.110339Search in Google Scholar
15. Liu, Z. C., Chai, J. L., Chai, Z. Q., Liu, N. N., Chai, H. H. and ZhangH. M.: Interfacial composition, solubility, and solubilization capacity of microemulsions containing cationic Gemini and anionic surfactants, J. Chem. Eng. Data59 (2014) 2230–2234. 10.1021/je500182zSearch in Google Scholar
16. Chai, J. L., Pan, J., Chen, J. F., Sun, B. and Lu, J. J.: Phase equilibria, interfacial, and bulk compositions of microemulsions containing short-chain alcohols studied by an optimum microemulsion dilution method, Colloid Polym. Sci.295 (2017) 1835–1842. 10.1007/s00396-017-4146-1Search in Google Scholar
17. Graaica, A., Laahcise, J., Cucophat, C., Bourrel, M. and Salager, J. L.: Improving solubilization in microemulsions with additives. 2. Long chain alkanols as lipophilic linkers, Langmuir9 (2002) 3371–3374. 10.1021/la00036a008Search in Google Scholar
18. Moreira, L. A. and Firoozabadi, A.: Thermodynamic modeling of the duality of linear 1-alcohols as cosurfactants and cosolvents in self-assembly of surfactant molecules, Langmuir25 (2009) 12101–12113. PMid:19670831; 10.1021/la9018426Search in Google Scholar PubMed
19. Chaghi, R., de Ménorval, L. C., Charnay, C. and Zajac, J.: Competitive interactions between components in surfactant-cosurfactant-additive systems, J. Colloid Interface Sci.344 (2010) 402–409. PMid:20110091; 10.1016/j.jcis.2009.12.064Search in Google Scholar PubMed
20. Lohateeraparp, P., Wilairuengsuwan, P., Saiwan, C., Sabatini, D. A. and Harwell, J. H.: Study of alcohol-free microemulsion systems containing fatty acids as cosurfactants, J. Surfactants Deterg.6 (2003) 15–24. 10.1007/s11743-003-0243-8Search in Google Scholar
21. Li, X. Q., Chai, J. L., Shang, S. C., Li, H. L., Lu, J. J., Yang, B. and Wu, Y. T.: Phase behavior of alcohol-free microemulsion systems containing butyric acid as a cosurfactant, J. Chem. Eng. Data.55 (2010) 3224–3228. 10.1021/je100060tSearch in Google Scholar
22. Chai, J. L., Chai, H. H., Sun, H., Liu, N., Liu, N. N., ZhangH. M. and Liu, Z. C.: Phase behavior and solubilization of microemulsion systems containing imidazolium type surfactant CnmimBr and butyric acid as cosurfactant, Tenside Surf. Det.51 (2014) 421–426. 10.3139/113.110324Search in Google Scholar
23. Butt, U., Elshaer, A., Las, S., Al-Kinani, A. A., Le, G. A. and Alany, R. G.: Fatty acid based microemulsions to combat ophthalmia neonatorum caused by neisseria gonorrhoeae and staphylococcus aureus, Nanomaterials8 (2018) 1–22. 10.3390/nano8010051Search in Google Scholar PubMed PubMed Central
24. Noirjean, C., Testard, F., Dejugnat, C., Jestin, J. and Carriere, D.: Molten fatty acid based microemulsions, Phys. Chem. Chem. Phys.18 (2016) 15911–15918. PMid:27241163; 10.1039/C6CP00533KSearch in Google Scholar
25. Branco, L., Ramos, R. J. N. and Afonso, J. J. M.: Preparation and characterization of new room temperature ionic liquids, Chem. Eur. J.8 (2002) 3671–3677. 10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9Search in Google Scholar
26. Fang, D., Cheng, J., Gong, K., Shi, Q. R., Zhou, X. L. and Liu, Z. L.: A green and novel procedure for the preparation of ionic liquid, J. Fluor. Chem.129 (2008) 108–111. 10.1016/j.jfluchem.2007.09.004Search in Google Scholar
27. Hou, N., Chai, J. L., ZhangJ. Q., SongJ. W., ZhangY. and LuJ. J.: Application of ∊-β fishlike phase diagrams on the microemulsion solubilizations of dense nonaqueous phase liquids, Fluid Phase Equilibr.412 (2016) 211–217. 10.1016/j.fluid.2015.12.024Search in Google Scholar
28. Chen, L. S., Pan, J., Sun, B., Zhang, X. Y., Cui, X. C., Lu, J. J. and Chai, J. L.: Phase behavior and solubilization of microemulsions containing C16 mimBr with different oil-water ratios. Tenside Surfact. Det.54 (2017) 419–426. 10.3139/113.110518Search in Google Scholar
29. Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Adv. Colloid Interface Sci.97 (2002) 205–253. 10.1016/S0001-8686(01)00069-0Search in Google Scholar
30. Chai, J. L., Sun, H., Li, X. Q., Chen, L. S., Yang, B. and Wu, Y. T.: Effect of inorganic salts on the phase behavior of microemulsion systems containing sodium dodecyl sulfate, J. Dispersion Sci. Technol.33 (2012) 1470–1474. 10.1080/01932691.2011.620831Search in Google Scholar
31. Lu, J. J., Pan, J., Chai, J. L., Zhu, M. L., Chai, Z. Q., Zhang, X. Y. and Cui, X. C.: Interfacial composition and solubilization of microemulsionsyms containing mixed surfactants C12mimBr and Brij35: effects of surfactant composition, temperature, and salinity, Colloid Polym. Sci.296 (2018) 1187–1194. 10.1007/s00396-018-4334-7Search in Google Scholar
32. Garti, N., Aserin, A., Ezrahi, S. and Wachtel, E.: Water solubilization and chain length compatibility in nonionic microemulsion, J. Colloid Interface Sci.169 (1995) 428–435. 10.1006/jcis.1995.1053Search in Google Scholar
33. Zhang, Y., Zhang, X. Y., Chai, J. L., Cui, X. C., Pan, J., Song, J. W., Sun, B. and Lu, J. J.: The phase behavior and solubilization of isopropyl myristate in microemulsions containing hexadecyl trimethyl ammonium bromide and sodium dodecyl sulfate, J. Mol. Liq.244 (2017) 262–268. 10.1016/j.molliq.2017.08.074Search in Google Scholar
© 2018, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents/Inhalt
- Short Communication
- Obsolescence of Large Household Appliances in Germany
- Review Article
- Quaternary Alkylammonium Salts as Cleaning and Disinfectant Agents
- Application
- Effect of N-dodecyl-N-(propylpiperydinium-3-sulfonate) on Usage Properties of Liquid Soaps for Sensitive Skin
- Surfactant Analysis
- Characterization of Tween® Surfactants by MALDI TOF-MS and High Performance Liquid Chromatography in a Ternary Mobile Phase
- Novel Surfactants
- Hyperbranched Polyamidoamine Surfactants: Synthesis, Characterization and Evaluation as Biocides
- Fermentative Production of Sophorolipid and Purification by Adsorption Chromatography
- Physical Chemistry
- A Comparison Study on the Phase Behavior and Solubilization between Cn(Bim)2-2Br-Butyric Acid and CnmimBr-Butyric Acid Microemulsion Systems
- Effect of Alkyl Tail Length of Alpha Olefin Sulfonates on Foam Properties
- Impact of Spacer and Hydrophobic Tail on Interfacial and Rheological Properties of Cationic Amido-Amine Gemini Surfactants for EOR Application
- Environmental Chemistry
- Role of Surfactants Cetyl Pyridinium Chloride (CPC) and Cetyltrimethyl Ammonium Bromide (CTAB) in the Reverse Micellar Extraction of Ternary Mixture of Acid Dyes from Textile Effluent
Articles in the same Issue
- Contents/Inhalt
- Contents/Inhalt
- Short Communication
- Obsolescence of Large Household Appliances in Germany
- Review Article
- Quaternary Alkylammonium Salts as Cleaning and Disinfectant Agents
- Application
- Effect of N-dodecyl-N-(propylpiperydinium-3-sulfonate) on Usage Properties of Liquid Soaps for Sensitive Skin
- Surfactant Analysis
- Characterization of Tween® Surfactants by MALDI TOF-MS and High Performance Liquid Chromatography in a Ternary Mobile Phase
- Novel Surfactants
- Hyperbranched Polyamidoamine Surfactants: Synthesis, Characterization and Evaluation as Biocides
- Fermentative Production of Sophorolipid and Purification by Adsorption Chromatography
- Physical Chemistry
- A Comparison Study on the Phase Behavior and Solubilization between Cn(Bim)2-2Br-Butyric Acid and CnmimBr-Butyric Acid Microemulsion Systems
- Effect of Alkyl Tail Length of Alpha Olefin Sulfonates on Foam Properties
- Impact of Spacer and Hydrophobic Tail on Interfacial and Rheological Properties of Cationic Amido-Amine Gemini Surfactants for EOR Application
- Environmental Chemistry
- Role of Surfactants Cetyl Pyridinium Chloride (CPC) and Cetyltrimethyl Ammonium Bromide (CTAB) in the Reverse Micellar Extraction of Ternary Mixture of Acid Dyes from Textile Effluent