Home Physical Sciences Hyperbranched Polyamidoamine Surfactants: Synthesis, Characterization and Evaluation as Biocides
Article
Licensed
Unlicensed Requires Authentication

Hyperbranched Polyamidoamine Surfactants: Synthesis, Characterization and Evaluation as Biocides

  • Tawfik M. Kassem , El-Sayed Ahmed Soliman , Ammona S. Mohamed , Dalia E. Mohamed and Fatma M. Abdelhafiz
Published/Copyright: November 16, 2018
Become an author with De Gruyter Brill

Abstract

Different generations of cationic hyperbranched quaternary ammonium polyamidoamine dendrimers (PAMAM) with methyl ester end group (G-0.5, G 0.5, G1.5 and G 2.5) were synthesized. Preparation of these dendrimers was carried out via alternative steps of an aza Michael addition reaction (of piperazine as core center molecule) and amidation reaction by ethylene diamine. Each aza Michael addition step was followed by a quaternization step using alkyl bromide with different chain length (4, 8 or 12) carbon atoms. The chemical structures of the prepared dendrimers were confirmed using FTIR, 1H-NMR spectra and elemental analysis for two generations as representative compounds. Also their surface activity has been studied and their surface parameters including surface and interfacial tension, emulsification power, critical micelle concentration, effectiveness, efficiency, maximum surface excess and minimum surface area were determined. The prepared quaternized dendrimers were tested as antimicrobial agents against different strains of bacteria, yeast and fungi. The results showed a significant antimicrobial efficacy of the synthesized surfactants.

Kurzfassung

Verschiedene Generationen von, kationischen, hyperverzweigten quaternären Ammonium-Polyamidoamin (PAMAM)-Dendrimeren mit endständigen Methylestergruppen (G-0,5, G-0,5, G-1,5 und G-2,5) wurden synthetisiert. Die Herstellung dieser Dendrimere erfolgte über alternative Schritte der Aza-Michael-Additionsreaktion (von Piperazin als Kernzentrummolekül) und einer Amidierungsreaktion durch Ethylendiamin. Jedem Aza-Michael-Additionsschritt folgte der Quaternisierungsschritt unter Verwendung von Alkylbromid mit 4, 8 oder 12 Kohlenstoffatomen in der Alkylkette. Die chemischen Strukturen der hergestellten Dendrimere wurden mittels FTIR- und 1H-NMR-Spektren sowie der Elementaranalyse für zwei Generationen als repräsentative Verbindungen bestätigt. Auch ihre Oberflächenaktivität wurde untersucht; ihre Oberflächenparameter (Oberflächen- und Grenzflächenspannung, Emulgiervermögen, kritische Mizellenbildungskonzentration, Wirksamkeit, Effizienz, maximaler Oberflächenüberschuss und minimale Oberfläche) wurden bestimmt. Die hergestellten quaternisierten Dendrimere wurden als antimikrobielle Mittel gegen verschiedene Bakterien-, Hefe- und Pilzstämme getestet. Die Ergebnisse zeigten eine signifikante antimikrobielle Wirksamkeit der synthetisierten Tenside.


*Correspondence address, Prof. Dr. Dalia E. Mohamed, Egyptian Petroleum Research Institute, 11727, Nasr City, Cairo, Egypt

Tawfik M. Kassem received his B.Sc. from Ain Shams University (1964), M.Sc. from Cairo University (1968) and Ph.D. from Ain Shams University (1973). He is Professor of Petrochemicals in the Petrochemicals Department (Egyptian Petroleum Research Institute, EPRI). His interests are focused on the synthesis and evaluations of surfactants in several fields including, biocidal application and solubilization.

El-Sayed Ahmed Soliman received his Ph.D. in organic chemistry from Ain Shams University in 1974. He has been Head of the Chemistry Department (Faculty of Science) at Ain Shams University since 2006, as well as a Professor in Houria Boumediene University for Science and Technology, Institute of Chemistry, Algeria, from 1986 to 1990.

Ammona S. Mohamed received her B.Sc. and M.Sc. from the Suez Canal University and her Ph.D. from Ain Shams University (2000). She is presently Professor of Applied Surfactants in the Petrochemicals Department (Egyptian Petroleum Research Institute, EPRI). Her interests are focused on the synthesis and evaluations of surfactants in several fields including, biocidal application, solubilization, and antitumor activity.

Dalia E. Mohamed received her B.Sc. and M.Sc. from Cairo University and a Ph.D. from Ain Shams University. She is presently associate Professor at the Egyptian Petroleum Research Institute (Surfactants Laboratory). Her research interests are focused on synthesis, properties and applications of new surfactants.

Fatma M. Abdelhafiz received her B.Sc. from Ain Shams University (2006) and M.Sc. from Benha University (2013). She is presently researcher assistant at the Egyptian Petroleum Research Institute (Surfactants Laboratory). Her interests are focused on synthesis, properties and applications of new surfactants in several fields.


References

1. VlastaT. and TeaM.: J. Dispersion Science and Technology38 (2017). 10.1080/01932691.2016.1180992Search in Google Scholar

2. IbrahimA. A., YoussefM. S. A., NashyEl-Sh. H. A. and EissaM. M.: International Journal of Polymer Science (2013) 8. 10.1155/2013/120656Search in Google Scholar

3. JungH. L., Yong-beomL., JoonS. C., Myung-unC., Chul-hakY. and Jong-sangP. K.: J. Chem. Soc24 (2003) 11.Search in Google Scholar

4. EbelegiN. A., EkuboT. A., AyaweiN. and WankasiD.: American Journal of Polymer Science, 7 (2017) 8. 10.5923/j.ajps.20170701.02Search in Google Scholar

5. SerenkoO., StrashnovP., KapustinG., KalininM., KuchnikaN., SerkovaE., ShifrinaZ. and MuzafarovA.: J. Royal Society of Chemistry, Advances.7 (2017) 7870. 10.1039/C6RA27064FSearch in Google Scholar

6. TomaliaL. A., ReynaD. A. and SvensonS.: Biochemical Society Transactions35 (2007) 61. PMid:17233602; 10.1042/BST0350061Search in Google Scholar PubMed

7. PaleosC. M., TsiourvasD. and SiderratouZ.: J. Mol. Pharm.4 (2007) 169. PMid:17222053; 10.1021/mp060076nSearch in Google Scholar PubMed

8. ChenJ., WuC. and OupickyD.: J. Biomacromolecules10 (2009) 2921. PMid:19891448; 10.1021/bm900724cSearch in Google Scholar PubMed PubMed Central

9. MeyersS. R., Juhn, F. S., GrisetA. P.LumanN. R. and GrinstaffM. W.: J. Am. Chem. Soc.130 (2008) 14444. 10.1021/ja806912aSearch in Google Scholar PubMed PubMed Central

10. StrydomS. J., RoseW. E., OttoD. P., LiebenbergW. and de VilliersM. M.: Nanomed. Nanotechnol.9 (2013) 85. DOI.org/10.1016/j.nano.2012.03.006. PMid:22470054; 10.1016/j.nano.2012.03.006Search in Google Scholar PubMed

11. FuchsA. D. and Tiller, J. C.: Angew. Chem. Int. Ed.45 (2006) 6759. PMid:16969889; 10.1002/anie.200602738Search in Google Scholar PubMed

12. ThomassinJ. M., LenoirS., RigaJ., JérômeR. and DetrembleurC.: Biomacromolecules8 (2007) 1171. PMid:17348705; 10.1021/bm0611228Search in Google Scholar PubMed

13. IlkerM. F., NüssleinK., TewG. N. and CoughlinE. B.: J. of Am. Chem. Soc.126 (2004) 15870. PMid:15571411; 10.1021/ja045664dSearch in Google Scholar PubMed

14. MajumdarP., LeeE., GubbinsN., StafslienS. J., DanielsJ., ThorsonC. J. and ChisholmB.: J. Polymer50, (2009), 1124. 10.1016/j.polymer.2009.01.009Search in Google Scholar

15. PatelH. N. and PatelP. M.: Dendrimer applications – A review. Int. J. of Pharm. Biol. Sci.4, (2013), 454. 10.1.1.302.6695Search in Google Scholar

16. AnupamR., DhimanK., ShrishnuK. K., AdinathM. and AlakanandaH.: J. The Open Catalysis.3 (2010) 34. 10.2174/1876214X01003010034Search in Google Scholar

17. YingnakhonW. and SrikulkitK.: Asian Journal of Chemistry25 (2013) 4009. 10.14233/ajchem.2013.13879Search in Google Scholar

18. MohamedM. Z., IsmailD. A. and MohamedA. S.: J. Surf. Det.8 (2005) 175. 10.1007/s11743-005-344-4Search in Google Scholar

19. Sjoblom, J.: J. Surfactant Science Series.61 (2005) 237.Search in Google Scholar

20. HikotaT. and MeguroK.: J. Am Oil Chem Soc.47 (1970) 158. 10.1007/BF02638742Search in Google Scholar

21. GuiqianLu., DingcaiWu. and RuowenFu.: J. react funct polym1 (2007) 8. 10.1016/j.reactfunctpolym.2007.01.008Search in Google Scholar

22. TomokazuY., ShunsukeA. and KunioE.: J. Oleo Science61 (2012) 699. 10.5650/jos.61.699Search in Google Scholar PubMed

23. TomokazuY., MasanoriS. and KunioE.: J. Oleo Science62 (2013) 213. 10.5650/jos.62.213Search in Google Scholar PubMed

24. El-SukkaryM. M. A., ShakerN. O., IsmailD. A., AhmedS. M. and AwadA. I.: Egyptian Journal of Petroleum21 (2012) 11.10.1016/j.ejpe.2012.02.002Search in Google Scholar

25. ShawnC. O., DiannaP.Y. and ChanaM. S.: J. Nano Today7 (2012) 53. 10.1016/j.nantod.2012.01.002Search in Google Scholar

26. RosenM. J. and KunjappuJ. T.: Surfactants and interfacial phenomena, 4th ed., John Wiley & Sons, Inc., Hoboken, NJ, (2012). 10.1002/9781118228920Search in Google Scholar

27. MorsyS. M. I.: J. Egypt. Petrol.1 (2005) 9.Search in Google Scholar

28. EastoeJ.: Surfactant Aggregation and Adsorption at Interfaces. In: CosgroveT. (ed.) Colloid Science Principles, Methods and Applications, 2nd Edition. Chichester, UK: John Wiley & Sons, (2010), 61.Search in Google Scholar

29. TakeshitaT., ShimoharaT. and MaedaS.: J. Am Oil Chem. Soc.59 (1982) 104. 10.1007/BF02678725Search in Google Scholar

30. Al-SabaghA. M.: J. Poly. Adv. Technol.11 (2000) 465.Search in Google Scholar

31. ShuichiM., KazayasuI., SadaoY., KazuoK. and TsuyoshiY.: J. Am Oil Chem. Soc.67 (1990) 996. 10.1007/BF02541865Search in Google Scholar

32. Rosen, M. J.: Surfactants and interfacial phenomena. Wiley, New York (1987) 72. PMid:2434798;Search in Google Scholar

33. FelixSiedenbiedel and Joerg C.Tiller.: J. Polymers4 (2012) 46. 10.3390/polym4010046Search in Google Scholar

34. MazumderA., DavisJ., RangariV. and CurryM.: J. Nanomaterials (2013) 9. 10.1155/2013/843709Search in Google Scholar

35. AzzamE. M. S., SamiR. M. and KandileN. G.: J. Amer Biochem2 (2012) 29. 10.1016/j.ejpe.2015.04.005.Search in Google Scholar

36. SadeghSh. A., AilA. and AdibiN.: J. Eng. Fail. Ana., 14 (2007) 250. 10.1016/j.engfailanal.2005.07.024Search in Google Scholar

Published Online: 2018-11-16
Published in Print: 2018-11-16

© 2018, Carl Hanser Publisher, Munich

Downloaded on 14.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/113.110587/html
Scroll to top button