Hyperbranched Polyamidoamine Surfactants: Synthesis, Characterization and Evaluation as Biocides
-
Tawfik M. Kassem
, El-Sayed Ahmed Soliman , Ammona S. Mohamed , Dalia E. Mohamed and Fatma M. Abdelhafiz
Abstract
Different generations of cationic hyperbranched quaternary ammonium polyamidoamine dendrimers (PAMAM) with methyl ester end group (G-0.5, G 0.5, G1.5 and G 2.5) were synthesized. Preparation of these dendrimers was carried out via alternative steps of an aza Michael addition reaction (of piperazine as core center molecule) and amidation reaction by ethylene diamine. Each aza Michael addition step was followed by a quaternization step using alkyl bromide with different chain length (4, 8 or 12) carbon atoms. The chemical structures of the prepared dendrimers were confirmed using FTIR, 1H-NMR spectra and elemental analysis for two generations as representative compounds. Also their surface activity has been studied and their surface parameters including surface and interfacial tension, emulsification power, critical micelle concentration, effectiveness, efficiency, maximum surface excess and minimum surface area were determined. The prepared quaternized dendrimers were tested as antimicrobial agents against different strains of bacteria, yeast and fungi. The results showed a significant antimicrobial efficacy of the synthesized surfactants.
Kurzfassung
Verschiedene Generationen von, kationischen, hyperverzweigten quaternären Ammonium-Polyamidoamin (PAMAM)-Dendrimeren mit endständigen Methylestergruppen (G-0,5, G-0,5, G-1,5 und G-2,5) wurden synthetisiert. Die Herstellung dieser Dendrimere erfolgte über alternative Schritte der Aza-Michael-Additionsreaktion (von Piperazin als Kernzentrummolekül) und einer Amidierungsreaktion durch Ethylendiamin. Jedem Aza-Michael-Additionsschritt folgte der Quaternisierungsschritt unter Verwendung von Alkylbromid mit 4, 8 oder 12 Kohlenstoffatomen in der Alkylkette. Die chemischen Strukturen der hergestellten Dendrimere wurden mittels FTIR- und 1H-NMR-Spektren sowie der Elementaranalyse für zwei Generationen als repräsentative Verbindungen bestätigt. Auch ihre Oberflächenaktivität wurde untersucht; ihre Oberflächenparameter (Oberflächen- und Grenzflächenspannung, Emulgiervermögen, kritische Mizellenbildungskonzentration, Wirksamkeit, Effizienz, maximaler Oberflächenüberschuss und minimale Oberfläche) wurden bestimmt. Die hergestellten quaternisierten Dendrimere wurden als antimikrobielle Mittel gegen verschiedene Bakterien-, Hefe- und Pilzstämme getestet. Die Ergebnisse zeigten eine signifikante antimikrobielle Wirksamkeit der synthetisierten Tenside.
References
1. VlastaT. and TeaM.: J. Dispersion Science and Technology38 (2017). 10.1080/01932691.2016.1180992Search in Google Scholar
2. IbrahimA. A., YoussefM. S. A., NashyEl-Sh. H. A. and EissaM. M.: International Journal of Polymer Science (2013) 8. 10.1155/2013/120656Search in Google Scholar
3. JungH. L., Yong-beomL., JoonS. C., Myung-unC., Chul-hakY. and Jong-sangP. K.: J. Chem. Soc24 (2003) 11.Search in Google Scholar
4. EbelegiN. A., EkuboT. A., AyaweiN. and WankasiD.: American Journal of Polymer Science, 7 (2017) 8. 10.5923/j.ajps.20170701.02Search in Google Scholar
5. SerenkoO., StrashnovP., KapustinG., KalininM., KuchnikaN., SerkovaE., ShifrinaZ. and MuzafarovA.: J. Royal Society of Chemistry, Advances.7 (2017) 7870. 10.1039/C6RA27064FSearch in Google Scholar
6. TomaliaL. A., ReynaD. A. and SvensonS.: Biochemical Society Transactions35 (2007) 61. PMid:17233602; 10.1042/BST0350061Search in Google Scholar PubMed
7. PaleosC. M., TsiourvasD. and SiderratouZ.: J. Mol. Pharm.4 (2007) 169. PMid:17222053; 10.1021/mp060076nSearch in Google Scholar PubMed
8. ChenJ., WuC. and OupickyD.: J. Biomacromolecules10 (2009) 2921. PMid:19891448; 10.1021/bm900724cSearch in Google Scholar PubMed PubMed Central
9. MeyersS. R., Juhn, F. S., GrisetA. P.LumanN. R. and GrinstaffM. W.: J. Am. Chem. Soc.130 (2008) 14444. 10.1021/ja806912aSearch in Google Scholar PubMed PubMed Central
10. StrydomS. J., RoseW. E., OttoD. P., LiebenbergW. and de VilliersM. M.: Nanomed. Nanotechnol.9 (2013) 85. DOI.org/10.1016/j.nano.2012.03.006. PMid:22470054; 10.1016/j.nano.2012.03.006Search in Google Scholar PubMed
11. FuchsA. D. and Tiller, J. C.: Angew. Chem. Int. Ed.45 (2006) 6759. PMid:16969889; 10.1002/anie.200602738Search in Google Scholar PubMed
12. ThomassinJ. M., LenoirS., RigaJ., JérômeR. and DetrembleurC.: Biomacromolecules8 (2007) 1171. PMid:17348705; 10.1021/bm0611228Search in Google Scholar PubMed
13. IlkerM. F., NüssleinK., TewG. N. and CoughlinE. B.: J. of Am. Chem. Soc.126 (2004) 15870. PMid:15571411; 10.1021/ja045664dSearch in Google Scholar PubMed
14. MajumdarP., LeeE., GubbinsN., StafslienS. J., DanielsJ., ThorsonC. J. and ChisholmB.: J. Polymer50, (2009), 1124. 10.1016/j.polymer.2009.01.009Search in Google Scholar
15. PatelH. N. and PatelP. M.: Dendrimer applications – A review. Int. J. of Pharm. Biol. Sci.4, (2013), 454. 10.1.1.302.6695Search in Google Scholar
16. AnupamR., DhimanK., ShrishnuK. K., AdinathM. and AlakanandaH.: J. The Open Catalysis.3 (2010) 34. 10.2174/1876214X01003010034Search in Google Scholar
17. YingnakhonW. and SrikulkitK.: Asian Journal of Chemistry25 (2013) 4009. 10.14233/ajchem.2013.13879Search in Google Scholar
18. MohamedM. Z., IsmailD. A. and MohamedA. S.: J. Surf. Det.8 (2005) 175. 10.1007/s11743-005-344-4Search in Google Scholar
19. Sjoblom, J.: J. Surfactant Science Series.61 (2005) 237.Search in Google Scholar
20. HikotaT. and MeguroK.: J. Am Oil Chem Soc.47 (1970) 158. 10.1007/BF02638742Search in Google Scholar
21. GuiqianLu., DingcaiWu. and RuowenFu.: J. react funct polym1 (2007) 8. 10.1016/j.reactfunctpolym.2007.01.008Search in Google Scholar
22. TomokazuY., ShunsukeA. and KunioE.: J. Oleo Science61 (2012) 699. 10.5650/jos.61.699Search in Google Scholar PubMed
23. TomokazuY., MasanoriS. and KunioE.: J. Oleo Science62 (2013) 213. 10.5650/jos.62.213Search in Google Scholar PubMed
24. El-SukkaryM. M. A., ShakerN. O., IsmailD. A., AhmedS. M. and AwadA. I.: Egyptian Journal of Petroleum21 (2012) 11.10.1016/j.ejpe.2012.02.002Search in Google Scholar
25. ShawnC. O., DiannaP.Y. and ChanaM. S.: J. Nano Today7 (2012) 53. 10.1016/j.nantod.2012.01.002Search in Google Scholar
26. RosenM. J. and KunjappuJ. T.: Surfactants and interfacial phenomena, 4th ed., John Wiley & Sons, Inc., Hoboken, NJ, (2012). 10.1002/9781118228920Search in Google Scholar
27. MorsyS. M. I.: J. Egypt. Petrol.1 (2005) 9.Search in Google Scholar
28. EastoeJ.: Surfactant Aggregation and Adsorption at Interfaces. In: CosgroveT. (ed.) Colloid Science Principles, Methods and Applications, 2nd Edition. Chichester, UK: John Wiley & Sons, (2010), 61.Search in Google Scholar
29. TakeshitaT., ShimoharaT. and MaedaS.: J. Am Oil Chem. Soc.59 (1982) 104. 10.1007/BF02678725Search in Google Scholar
30. Al-SabaghA. M.: J. Poly. Adv. Technol.11 (2000) 465.Search in Google Scholar
31. ShuichiM., KazayasuI., SadaoY., KazuoK. and TsuyoshiY.: J. Am Oil Chem. Soc.67 (1990) 996. 10.1007/BF02541865Search in Google Scholar
32. Rosen, M. J.: Surfactants and interfacial phenomena. Wiley, New York (1987) 72. PMid:2434798;Search in Google Scholar
33. FelixSiedenbiedel and Joerg C.Tiller.: J. Polymers4 (2012) 46. 10.3390/polym4010046Search in Google Scholar
34. MazumderA., DavisJ., RangariV. and CurryM.: J. Nanomaterials (2013) 9. 10.1155/2013/843709Search in Google Scholar
35. AzzamE. M. S., SamiR. M. and KandileN. G.: J. Amer Biochem2 (2012) 29. 10.1016/j.ejpe.2015.04.005.Search in Google Scholar
36. SadeghSh. A., AilA. and AdibiN.: J. Eng. Fail. Ana., 14 (2007) 250. 10.1016/j.engfailanal.2005.07.024Search in Google Scholar
© 2018, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents/Inhalt
- Short Communication
- Obsolescence of Large Household Appliances in Germany
- Review Article
- Quaternary Alkylammonium Salts as Cleaning and Disinfectant Agents
- Application
- Effect of N-dodecyl-N-(propylpiperydinium-3-sulfonate) on Usage Properties of Liquid Soaps for Sensitive Skin
- Surfactant Analysis
- Characterization of Tween® Surfactants by MALDI TOF-MS and High Performance Liquid Chromatography in a Ternary Mobile Phase
- Novel Surfactants
- Hyperbranched Polyamidoamine Surfactants: Synthesis, Characterization and Evaluation as Biocides
- Fermentative Production of Sophorolipid and Purification by Adsorption Chromatography
- Physical Chemistry
- A Comparison Study on the Phase Behavior and Solubilization between Cn(Bim)2-2Br-Butyric Acid and CnmimBr-Butyric Acid Microemulsion Systems
- Effect of Alkyl Tail Length of Alpha Olefin Sulfonates on Foam Properties
- Impact of Spacer and Hydrophobic Tail on Interfacial and Rheological Properties of Cationic Amido-Amine Gemini Surfactants for EOR Application
- Environmental Chemistry
- Role of Surfactants Cetyl Pyridinium Chloride (CPC) and Cetyltrimethyl Ammonium Bromide (CTAB) in the Reverse Micellar Extraction of Ternary Mixture of Acid Dyes from Textile Effluent
Articles in the same Issue
- Contents/Inhalt
- Contents/Inhalt
- Short Communication
- Obsolescence of Large Household Appliances in Germany
- Review Article
- Quaternary Alkylammonium Salts as Cleaning and Disinfectant Agents
- Application
- Effect of N-dodecyl-N-(propylpiperydinium-3-sulfonate) on Usage Properties of Liquid Soaps for Sensitive Skin
- Surfactant Analysis
- Characterization of Tween® Surfactants by MALDI TOF-MS and High Performance Liquid Chromatography in a Ternary Mobile Phase
- Novel Surfactants
- Hyperbranched Polyamidoamine Surfactants: Synthesis, Characterization and Evaluation as Biocides
- Fermentative Production of Sophorolipid and Purification by Adsorption Chromatography
- Physical Chemistry
- A Comparison Study on the Phase Behavior and Solubilization between Cn(Bim)2-2Br-Butyric Acid and CnmimBr-Butyric Acid Microemulsion Systems
- Effect of Alkyl Tail Length of Alpha Olefin Sulfonates on Foam Properties
- Impact of Spacer and Hydrophobic Tail on Interfacial and Rheological Properties of Cationic Amido-Amine Gemini Surfactants for EOR Application
- Environmental Chemistry
- Role of Surfactants Cetyl Pyridinium Chloride (CPC) and Cetyltrimethyl Ammonium Bromide (CTAB) in the Reverse Micellar Extraction of Ternary Mixture of Acid Dyes from Textile Effluent