Electrocatalytic Hydrogenolysis of Chlorophenolic Compounds by Modified Electrodes in Aqueous Medium in the Absence and the Presence of Ionic Surfactant
-
Sadia Boukreris
Abstract
The electrocatalytic hydrogenolysis of different chlorophenolic compounds, namely 2-chlorophenol (2CP) and pentachlorophenol (PCP) was performed on nickel-silica (Ni-SiO2) and nickel-clay (Ni-CY) electrode catalyts. The influence of the catalytic support and the surfactant agent was studied in aqueous media at different pH. Results demonstrated that different regioselectivities were observed according to the used catalytic support. The cyclohexanone was obtained as the major product. In presence of ionic surfactants (SDS and CTAB), the investigated electrodes exhibited a promising dechlorination and hydrogenation potential of aromatic halides with high electrocatalytic activity and good stability.
Kurzfassung
Die elektrokatalytische Hydrogenolyse von verschiedenen chlorphenolischen Verbindungen, nämlich 2-Chlorphenol (2CP) und Pentachlorphenol (PCP), wurde an Nickel-Siliciumdioxid (Ni-SiO2)- und Nickel-Ton (Ni-CY)-Elektrodenkatalysatoren durchgeführt. Der Einfluss des katalytischen Trägers und des Tensids wurde in wässrigen Medien bei unterschiedlichem pH-Werten untersucht. Die Ergebnisse zeigten, dass unterschiedliche Regioselektivitäten vorliegen, je nachdem, welcher katalytische Träger verwendet wurde. Cyclohexanon wurde als Hauptprodukt erhalten. In Gegenwart der ionischen Tenside SDS und CTAB zeigten die untersuchten Elektroden ein vielversprechendes Dechlorierungs- und Hydrierungspotential von aromatischen Halogeniden mit hoher elektrokatalytischer Aktivität und guter Stabilität.
References
1. Chunyue, C., Xie, Q., Shuo, C. and Huimin, Z.: Adsorption and electrocatalytic dechlorination of pentachlorophenol on palladium-loaded activated carbon fibers; Sep. Purif. Technol.47 (2005) 73–79. 10.1016/j.seppur.2005.06.005Search in Google Scholar
2. Bo, Y., Gang, Y. and Danmeng, S.: Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode, Chemosphere.67 (2007) 1361–1367. 10.1016/j.chemosphere.2006.10.046Search in Google Scholar PubMed
3. Ilikti, H., Rekik, N. and Thomalla, M.: Electrocatalytic hydrogenation of alkyl-substituted phenols in aqueous solutions at a Raney nickel electrode in the presence of a non-micelle-forming cationic surfactant; J. Appl. Electrochem.34 (2004) 127. 10.1023/B:JACH.0000009932.06652Search in Google Scholar
4. Yang, B., Wang, S., Yu, G. and Zhou, Y.: Electrocatalytic reduction of 2-chlorobiphenyl in contaminated water using palladium-modified electrode; Sep. Purif. Technol.63 (2008) 353. 10.1016/j.seppur.2008.05.025Search in Google Scholar
5. Breton, S., Wittmeyer, A. B., Rios Martin, J., Leon Camacho, M., Lasia, A. and Menard, H.: Selective Electrocatalytic Hydrogenation of Linolenic Acid on Pd/Al2O3 and Pd-Co/Al2O3; Catalysts Inter. J. Electrochem.10 (2011) 485. 10.4061/2011/485194Search in Google Scholar
6. Xiang, H., Yang, Y. and Lijuan, Y.: Electrocatalytic activity of Ce-PbO2/C anode for acid red B reduction in aqueous solution; J. Solid State Electrochem.19 (2015) 1599–1609. 10.1007/s10008-015-2781-3Search in Google Scholar
7. Ivanova, N. M., Soboleva, E. A., Visurkhanova, Ya. A. and Kirilyus, I. V.: Electrocatalytic activity of polyaniline-copper composites in electrohydrogenation of p-nitroaniline; Russ. J. Electrochem.51 (2015) 166–173. 10.1134/S1023193515020056Search in Google Scholar
8. Zhou, H., Li, Y., Huang, J., Fang, C., Shan, D. and Kuang, Y.: Ag–Ni alloy nanoparticles for electrocatalytic reduction of benzyl chloride; Trans. Nonferrous Met. Soc. China.25 (2015) 4001–4007. 10.1016/S1003-6326(15)64049-3Search in Google Scholar
9. Ilikti, H., Benabdallah, T., Boukreris, S., Aouad, M. R. and El Ashry, E. S. H.: Electrocatalytic Hydrogenation and Hydrogenolysis of Aromatic Halides by Raney nickel in the Presence of Different Surfactants; Tenside Surf. Det.45 (2008) 126–130. 10.3139/113.100369Search in Google Scholar
10. Pattabiraman, R.: Electrochemical investigations on carbon supported palladium catalysts; Appl. Catal. A153 (1997) 9–20. 10.1016/S0926-860X(96)00327-4Search in Google Scholar
11. Shia, Q., Wanga, H., Liua, S., Panga, L. and Bianb, Z.: Electrocatalytic Reduction-oxidation of Chlorinated Phenols using a Nanostructured Pd-Fe Modified Graphene; Catalyst Electrochimica Acta.178 (2015) 92–100. 10.1016/j.electacta.2015.07.186Search in Google Scholar
12. Sun, Z., GeHui, HuXiang and PengYong-zhen: Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solution; Sep. Purif. Technol.72 (2010) 133–139. 10.1016/j.seppur.2010.01.014Search in Google Scholar
13. Mathiyarasu, J., Joseph, J., Phani, K. L. and Yegnaraman, V.: Electrochemical detection of phenol in aqueous solutions; Indian J. Chem. Technol.11 (2004).Search in Google Scholar
14. Tsyganok, A. I., Yamanaka, I. and Otsuka, K.: Pd-loaded carbon felt as the cathode for selective dechlorination of 2,4-dichlorophenoxyacetic acid in aqueous solution. J. Electrochem. Soc. 145 (1998) 3844–3850. 10.1149/1.1838883Search in Google Scholar
15. Chen, G., Wang, Z. Y. and Xia, D. G.: Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium; Electrochim. Acta. 50 (2004) 933–937. 10.1016/j.electacta.2004.06.019Search in Google Scholar
16. Cheng, H., Scott, K. and Christensen, P. A.: Engineering aspects of electrochemical hydrodehalogenation of 2,4-dichlorophenol in a solid polymer electrolyte reactor. Appl. Catal. A. 261 (2004) 1–6. 10.1016/j.apcata.2003.10.021Search in Google Scholar
17. Cui, C. Y., Quan, X., Chen, S. and Zhao, H. M.: Adsorption and electrocatalytic dechlorination of pentachlorophenol on palladiumloaded activated carbon fibers. Sep. Purif. Technol.47 (2005) 73–79. 10.1016/j.seppur.2005.06.005Search in Google Scholar
18. Ilikti, H., Rekik, N. and Thomalla, M.: Electrocatalytic hydrogenation of phenol in aqueous solutions at a Raney nickel electrode in the presence of cationic surfactants; J. Appl. Electrochem.32 (2002) 603–609. 10.1023/A:1020151429953Search in Google Scholar
19. Primet, M., Dalmon, J. A. and Martin, G. A.: Adsorption of CO on well-defined Ni/SiO2 catalysts in the 195–373 K range studied by infrared spectroscopy and magnetic methods; J. Catal.46 (1977) 25–36. 10.1016/0021-9517(77)90132-4Search in Google Scholar
20. Park, S. J. and Jang, Y. S.: Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior; J. Colloid Interface Sci.261 (2003) 238–243. 10.1016/S0021-9797(03)00083-3Search in Google Scholar
21. Nitta, Y.: Preparation chemistry of precipitated Ni/SiO2 catalysts for enantioselective hydrogenation; J. Catalysis.96 (1985) 429–438. 10.1016/0021-9517(85)90312-4Search in Google Scholar
22. Li, Y. P., Cao, H. B. and Zhang, Y.: Electrochemical dechlorination of chloroacetic acids (CAAs) using hemoglobin-loaded carbon nanotube electrode; Chemosphere. 63 (2006) 359–64. 10.1016/j.chemosphere.2005.07.014Search in Google Scholar PubMed
23. Ramesh, R., Damodar, J. and Reddy, S. J.: The electrocatalytic hydrogenation of α-aryl acrylic acids; Electrochem. Commun.4 (2002) 115–117. 10.1016/S1388-2481(01)00284-3Search in Google Scholar
24. Isse, A. A., Huang, B. B., Durante, C. and Gennaro, A.: Electrocatalytic dechlorination of volatile organic compounds at a copper cathode. Part I: Polychloromethanes; Appl. Catal. B: Environ.126 (2012) 347–354. 10.1016/j.apcatb.2012.07.004Search in Google Scholar
25. Perini, L., Durante, C., Favaro, M., Agnoli, S., Granozzi, G. and Gennaro, A.: Electrocatalysis at palladium nanoparticles: effect of the support nitrogen doping on the catalytic activation of carbon-halogen bond; Appl. Catal. B: Environ.144 (2014) 300–307. 10.1016/j.apcatb.2013.07.023Search in Google Scholar
26. Wang, H. and Wang, J. L.: Electrochemical degradation of 4-chlorophenol using a novel Pd/C gas-diffusion electrode; Appl. Catal. B: Environ.77 (2007) 58–65. 10.1016/j.apcatb.2007.07.004Search in Google Scholar
27. Wang, H. and Wang, J. L.: Electrochemical degradation of 2,4-dichlorophenol on a palladium modified gas-diffusion electrode; Electrochim. Acta. 53 (2008) 6402–6409. 10.1016/j.electacta.2008.04.080Search in Google Scholar
28. Molina, C. B., Pizarro, A. H., Casas, J. A. and Rodriguez, J. J.: Aqueous-phase hydrodechlorination of chlorophenols with pillared clays-supported Pt, Pd and Rh catalysts; Appl. Catal. B: Environ.148 (2014) 330–338. 10.1016/j.apcatb.2013.11.010Search in Google Scholar
29. Martel, A., Mahdavi, B., Lessard, J., Brossard, L. and Menard, H.: Electrocatalytic hydrogenation of phenol on various electrode materials; Can. J. Chem.75 (1997) 1862. 10.1139/v97-619Search in Google Scholar
30. Dabo, P., Cyr, A., Laplante, F., Jean, F., Menard, H. and Lessard, J.: Electrocatalytic dehydrochlorination of Pentachlorophenol to Phenol or Cyclohexanol; Environ. Sci. Technol.34 (2000) 1265–1268. 10.1021/es9911465Search in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Application
- The Influence of Natural and Synthetic Additives in Mitigating Calcium Phosphate Scale in Industrial Water Systems
- Preparation and Application of Double-Hydrophilic Copolymer as Scale and Corrosion Inhibitor for Industrial Water Recycling
- Removal of Insoluble Slimes from Potash Ore Using Flotation
- Ester-Based Pyridinium Gemini Surfactants as Novel Inhibitors for Mild Steel Corrosion in 1 M HCl Solution
- Novel Surfactants
- Benzalkonium Salts of Amino Acids – Physicochemical Properties and Anti-Microbial Activity
- Synthesis, Characterizations and Multifunctional Activities of New Thiourea-Based Non-Ionic Surfactants
- Environmental Chemistry
- Extraction of Natural Surfactant Saponin from Soapnut (Sapindus mukorossi) and its Utilization in the Remediation of Hexavalent Chromium from Contaminated Water
- Electrocatalytic Hydrogenolysis of Chlorophenolic Compounds by Modified Electrodes in Aqueous Medium in the Absence and the Presence of Ionic Surfactant
- Physical Chemistry
- Enzymatic Synthesis and Characterization of Sucrose Erucate
- Study of the Complex System of Fatty Alcohol Polyoxyethylene Ether Carboxylate and Alkyl Betaine for Heavy Oil Recovery
Articles in the same Issue
- Contents/Inhalt
- Contents
- Application
- The Influence of Natural and Synthetic Additives in Mitigating Calcium Phosphate Scale in Industrial Water Systems
- Preparation and Application of Double-Hydrophilic Copolymer as Scale and Corrosion Inhibitor for Industrial Water Recycling
- Removal of Insoluble Slimes from Potash Ore Using Flotation
- Ester-Based Pyridinium Gemini Surfactants as Novel Inhibitors for Mild Steel Corrosion in 1 M HCl Solution
- Novel Surfactants
- Benzalkonium Salts of Amino Acids – Physicochemical Properties and Anti-Microbial Activity
- Synthesis, Characterizations and Multifunctional Activities of New Thiourea-Based Non-Ionic Surfactants
- Environmental Chemistry
- Extraction of Natural Surfactant Saponin from Soapnut (Sapindus mukorossi) and its Utilization in the Remediation of Hexavalent Chromium from Contaminated Water
- Electrocatalytic Hydrogenolysis of Chlorophenolic Compounds by Modified Electrodes in Aqueous Medium in the Absence and the Presence of Ionic Surfactant
- Physical Chemistry
- Enzymatic Synthesis and Characterization of Sucrose Erucate
- Study of the Complex System of Fatty Alcohol Polyoxyethylene Ether Carboxylate and Alkyl Betaine for Heavy Oil Recovery