Startseite Mesoscopic Simulations on the Aggregate Behavior of Oligomeric Adamantane Surfactants in Aqueous Solutions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mesoscopic Simulations on the Aggregate Behavior of Oligomeric Adamantane Surfactants in Aqueous Solutions

  • Jingrui Chen , Chufen Yang , Jianwei Guo , Dongyu Zhu , Shuqin Fu , Zhe Yang und Xing Zhong
Veröffentlicht/Copyright: 11. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Oligomeric adamantane surfactants are novel surfactants using rigid adamantane as spacer group, which can form a variety of scales and shapes of micelles and aggregates in aqueous solution. In this paper, the self-assembling aggregate behavior of N,N-dimethyl dodecyl ammonium bromide adamantine [Ad-(NC12Br)], 1,3-di(N,N-dimethyl dodecyl ammonium bromide) adamantine [Ad-(NC12Br)2] and 1,3,5-tri-(N,N-dimethyl dodecyl ammonium bromide) adamantine [Ad-(NC12Br)3] in aqueous solution is studied by mesoscopic simulations of dissipative particle dynamics (DPD). The simulation results show that the critical micelle concentrations of the three adamantane oligomeric surfactants is in the order of [Ad-(NC12Br)3] < [Ad-(NC12Br)2] < [Ad-(NC12Br)]. The three oligomeric adamantane surfactants are able to form aggregates with a variety of spatial structures, such as spherical micelles, vesicles, lamellas, reticular lamellas, column lamellas or steric reticules in response to different surfactant concentrations in the aqueous solution.

Kurzfassung

Oligomere Adamantan-Tenside sind neuartige Verbindungen mit starrem Adamantan als Spacergruppe. Sie können Mizellen und Aggregate in einer Vielzahl von Formen und Längen in wässriger Lösung bilden. In dieser Arbeit wird die Selbstorganisation von Aggregaten in wässriger Lösung von N, N-Dimethyldodecylammoniumbromidadamantin [Ad-(NC12Br)], 1,3-Di(N,N-dimethyldodecylammoniumbromid)-adamantine [Ad-(NC12Br)2] und 1,3,5-Tri(N,N-dimethyldodecylammoniumbromide)-adamantine [Ad-(NC12Br)3] mit Hilfe mesoskopischer Simulation der dissipativen Teilchendynamik (DPD) untersucht. Die Ergebnisse der Simulation zeigen, dass die kritische Mizellenkonzentration der drei oligomeren Adamantan-Tenside vorliegt, wenn [Ad-(NC12Br)3] < [Ad-(NC12Br)2] < [Ad-(NC12Br)]. Die drei oligomeren Adamantan-Tenside können in Reaktion auf die unterschiedlichen Tensidkonzentrationen in wässriger Lösung Aggregate mit einer Vielzahl von räumlichen Strukturen wie sphärische Micellen, Vesicula, Lamellen, Lamellennetzen, Lamellensäulen oder sterische Netze bilden.


*Correspondence address, Dr. Chufen Yang, Prof. Jianwei Guo, School of Chemical Engineering and Light Industry Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center Panyu District, Guangzhou, 510006, P. R. China. Tel.: 86-0 20-39 32 22 32, Fax: 86-0 20-39 32 22 32, E-Mail: ,

Jingrui Chen received his B. Sc. degree in Chemical Engineering and Technology (2012) in Guangdong University of Technology and is currently completing his M. Sc. in applied Chemical Engineering (2015) at Guangdong University of Technology, China. His interests include dissipative particle dynamics detergents, surfactants and organic synthesis.

Chufen Yang is a professor at the School of Chemical Engineering and Light Industry at Guangdong University of Technology, China. Her obtained an M. Sc. in organic chemical industry at South China University of Technology, a Ph. D. at South China University of Technology. Her research is focused on dissipative particle dynamics, chemical engineering and environmental technology.

Jianwei Guo is a professor at the School of Chemical Engineering and Light Industry at Guangdong University of Technology, China. He obtained an M. Sc. in organic chemical industry (1995) at TianJin University, a Ph. D. in industrial catalysis (2001) at South China University of Technology and a post-doctorate at Northwestern Polytechnical University (2003). His research is focused on catalysts, surfactants, detergents, flame retardants, and self-healing materials.

Dongyu Zhu earned her Ph. D. degree in polymer chemistry and physics in June 2013 in Sun Yat-sen University. Now she is a postdoctoral fellow at the School of Chemical Engineering and Light Industry, Guangdong University of Technology, China, where she obtained her master's degree in 2010. Her main research interests are focused on surfactants, detergents, flame retardants, hydrogels, and self-healing materials.

Shuqin Fu received her B. Sc. from JiangXi University of Science and Technology (2011) and is currently a Ph. D. student at Guangdong University of Technology, Guangzhou, China. Her main field of research is synthesis and properties of surfactants.

Zhe Yang earned his Ph. D. degree in China University of Petroleum. Now he is a postdoctoral fellow at the School of Chemical Engineering and Light Industry, Guangdong University of Technology, China. His main research interests are focused on carbon fiber, water treatment process and petrochemical engineering.

Xing Zhong received his B. Sc. from Guilin University of Technology (2009) and is currently finishing his Ph. D. in applied chemistry at Guangdong University of Technology, Guangzhou, China. His interests are focused on the synthesis and application of surfactants, adamantane chemistry and its biological relevance.


References

1. Hegazy, M. A.: A novel Schiff base-based cationic gemini surfactants: Synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid solution. Corros. Sci.51 (2009) 26102618. 10.1016/j.corsci.2009.06.046Suche in Google Scholar

2. Menger, F. M. and Keiper, J. S.: Gemini surfactants. Angew. Chem. Int. Ed.39 (2000) 19061920. 10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-QSuche in Google Scholar

3. Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Adv. Colloid Interface Sci.97 (2002) 205253. 10.1016/S0001-8686(01)00069-0Suche in Google Scholar

4. Zana, R.: Micellization of amphiphiles: selected aspects. Colloids Surf. A123 (1997) 2735. 10.1016/S0927-7757(96)03788-0Suche in Google Scholar

5. Bain, C. D., Claesson, P. M., Langevin, D., Meszaros, R., Nylander, T., Stubenrauch, C. and von Klitzing, R.: Complexes of surfactants with oppositely charged polymers at surfaces and in bulk. Adv. Colloid Interface Sci.155 (2010) 3249. 10.1016/j.cis.2010.01.007Suche in Google Scholar

6. Sharma, V. D., Lees, J., Hoffman, N. E., Brailoiu, E., Madesh, M., Wunder, S. L. and Ilies, M. A.: Modulation of Pyridinium Cationic Lipid-DNA Complex Properties by Pyridinium Gemini Surfactants and Its Impact on Lipoplex Transfection Properties. Mol. Pharmaceutics.11 (2014) 545559. 10.1021/mp4005035Suche in Google Scholar

7. Zhou, T., Llizo, A., Li, P., Wang, C., Guo, Y., Ao, M. and Xu, G.: High Transfection Efficiency of Homogeneous DNA Nanoparticles Induced by Imidazolium Gemini Surfactant as Nonviral Vector. J. Phys. Chem. C117 (2013) 2657326581. 10.1021/jp4061363Suche in Google Scholar

8. Wettig, S. D., Verrall, R. E. and Foldvari, M.: Gemini surfactants: a new family of building blocks for non-viral gene delivery systems. Curr. Gene. Ther.8 (2008) 923. 10.2174/156652308783688491Suche in Google Scholar

9. Krause, W. E., Parvez, M., Visscher, K. B. and Allcock, H. R.: Synthesis and structure of adamantane-containing phosphazenes. Inorg. Chem.35 (1996) 63376338. 10.1021/ic960721sSuche in Google Scholar

10. Fraaije, J. G. E. M.: Dynamic density functional theory for microphase separation kinetics of block copolymer melts. J. Chem. Phys.99 (1993) 92029212. 10.1063/1.465536Suche in Google Scholar

11. Lin, Y., Qiao, Y., Cheng, X., Yan, Y., Li, Z. and Huang, J.: Hydrotropic salt promotes anionic surfactant self-assembly into vesicles and ultralong fibers. J. Colloid Interface Sci.369 (2012) 238244. 10.1016/j.jcis.2011.11.067Suche in Google Scholar PubMed

12. Wanka, G., Hoffmann, H. and Ulbricht, W.: Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules.27 (1994) 41454159. 10.1021/ma00093a016Suche in Google Scholar

13. Lindahl, E. and Edholm, O.: Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys.79 (2000) 426433. 10.1016/S0006-3495(00)76304-1Suche in Google Scholar PubMed PubMed Central

14. Brannigan, G., Lin, L. C. L. and Brown, F. L.: Implicit solvent simulation models for biomembranes. Eur. J. Biochem.35 (2006) 104124. 10.1007/s00249-005-0013-ySuche in Google Scholar PubMed

15. Yuan, S. L., Cai, Z. T., Xu, G. Y. and Jiang, Y. S.: Mesoscopic simulation study on phase diagram of the system oil/water/aerosol OT. Chem. Phys. Lett.365 (2002) 347353. 10.1021/jp053636rSuche in Google Scholar PubMed

16. Shang, Y., Liu, H., Hu, Y. and Prausnitz, J. M.: Phase behavior and microstructures of the Gemini (12-3-12, 2Br-)-SDS-H2O ternary. Colloids Surf. A294 (2007) 203211. 10.1016/j.colsurfa.2006.08.012Suche in Google Scholar

17. Guo, X. D., Zhang, L. J., Wu, Z. M. and Qian, Y.Dissipative particle dynamics studies on microstructure of pH-sensitive micelles for sustained drug delivery. Macromolecules.43 (2010) 78397844. 10.1021/ma101132nSuche in Google Scholar

18. Guo, X. D., Qian, Y., Zhang, C. Y., Nie, S. Y. and Zhang, L. J.: Can drug molecules diffuse into the core of micelles? Soft Matter. 8 (2012) 99899995. 10.1039/C2SM26200BSuche in Google Scholar

19. Xin, X., Zhu, Y., Cao, X. and Xu, G.Interaction between an ethoxylated alkylphenol polymer with formaldehyde and triblock polyEO-polyPO-polyEO Copolymer in aqueous solutions. J. Surf. Deterg.17 (2014) 7183. 10.1007/s11743-013-1447-3Suche in Google Scholar

20. Lee, M. T., Vishnyakov, A. and Neimark, A. V.: Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity. J. Phys. Chem. B.117 (2013) 1030410310. 10.1021/jp4042028Suche in Google Scholar PubMed

21. Hoogerbrugge, P. J. and Koelman, J. M. V. A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett.19 (1992) 155. 10.1209/0295-5075/19/3/001Suche in Google Scholar

22. Koelman, J. M. V. A. and Hoogerbrugge, P. J.: Dynamic simulations of hard-sphere suspensions under steady shear. Europhys. Lett.21 (1993) 363. 10.1209/0295-5075/21/3/018Suche in Google Scholar

23. Groot, R. D.: Mesoscopic simulation of polymer-surfactant aggregation. Langmuir16 (2000) 74937502. 10.1021/la000010dSuche in Google Scholar

24. Groot, R. D.: Electrostatic interactions in dissipative particle dynamics simulation of polyelectrolytes and anionic surfactants. J. Chem. Phys.118 (2003) 1126511277. 10.1063/1.1574800Suche in Google Scholar

25. Groot, R. D. and Warren, P. B.: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys.107 (1997) 4423. 10.1063/1.474784Suche in Google Scholar

26. Groot, R. D. and Madden, T. J.: Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys.108 (1998) 87138724. 10.1063/1.476300Suche in Google Scholar

27. Groot, R. D. and Rabone, K. L.: Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biochem. J.81 (2001) 725736. 10.1016/S0006-3495(01)75737-2Suche in Google Scholar PubMed PubMed Central

28. Dong, F. L., Li, Y. and Zhang, P.: Mesoscopic simulation study on the orientation of surfactants adsorbed at the liquid/liquid interface. Chem. Phys. Lett.399 (2004) 215219. 10.1016/j.cplett.2004.10.022Suche in Google Scholar

29. Wang, H., Liu, Y. T., Qian, H. J. and Lu, Z. Y.: Dissipative particle dynamics simulation study on complex structure transitions of vesicles formed by comb-like block copolymers. Polym.52 (2011) 20942101. 10.1016/j.polymer.2011.02.045Suche in Google Scholar

30. Zhong, X., Guo, J. W., Fu, S. Q., Zhu, D. Y. and Peng, J. P.: Synthesis, Surface Property and Antimicrobial Activity of Cationic Gemini Surfactants Containing Adamantane and Amide Groups. Colloids Surf. A.17 (2014) 943950. 10.1007/s11743-014-1580-7Suche in Google Scholar

31. Cates, M. E. and Candau, S. J.: Statics and dynamics of worm-like surfactant micelles. J. Phys.: Condens. Matter.2 (1990) 6869. 10.1088/0953-8984/2/33/001Suche in Google Scholar

32. Schurtenberger, P., Cavaco, C., Tiberg, F. and Regev, O.: Enormous concentration-induced growth of polymer-like micelles: Langmuir12 (1996) 28942899. 10.1021/la9508248Suche in Google Scholar

33. Narayanan, J., Urbach, W., Langevin, D., Manohar, C. and Zana, R.: Self-Diffusion in Wormlike Micelles Networks with Electrostatic Interactions: A Universal Behavior? Phys. Rev. Lett. 81 (1998) 228. 10.1103/PhysRevLett.81.228Suche in Google Scholar

Received: 2015-03-09
Accepted: 2015-09-18
Published Online: 2016-03-11
Published in Print: 2016-03-16

© 2016, Carl Hanser Publisher, Munich

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110416/html?lang=de
Button zum nach oben scrollen