Synthesis and Evaluation of Some Phenol-Based Anionic Gemini Amphiphiles: Studying Their Influence in the Preparation of Cu2O nanoparticles
-
Fawzia I. El-dib
, Ammona S. Mohamed , Abdallah A. El-Sawy , Dalia E. Mohamed and Nermeen M. Abdelhalim
Abstract
A series of phenol-based anionic gemini amphiphiles called α,ω-bis (m-dodecanoyl benzene sulfonate) with different spacers (C12-En-C12) where n = 1, 2, 3 has been synthesized via three steps of reaction: (1) acylation of phenol by dodecanoic acid using trifluromethane sulfonic acid as a catalyst, (2) tosylation of mono, di and triethylene glycol, then (3) coupling of tosylated ethylene glycols with acylated phenol, followed by sulphonation of the prepared compounds. The chemical structures of the prepared surfactants were confirmed using elementary analysis and different spectroscopic techniques including FTIR and 1H-NMR spectra. Also an evaluation of surface activity for the synthesized compounds has been determined including: surface and interfacial tension, foaming height, emulsification power, critical micelle concentration (CMC), effectiveness and efficiency. The prepared surfactants were used in the synthesis of cuprous oxide nanoparticles. The crystal structure, average particle size and morphology were investigated by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM).
Kurzfassung
Eine Reihe von anionischen Geminitenside auf Phenolbasis (α,ω-Bis(m-dodecanoylbenzenesulfonate mit unterschiedlichen Spacern (C12-En-C12) wobei (n = 1, 2, 3)) wurden in einer Dreistufenreaktion synthetisiert: (1) Acetylierung von Phenol mit Dodecansäure unter Verwendung von Trifluormethansulfonsäure als Katalysator, (2) Tosylierung von Mono, Di- und Triethylenglycol, und (3) Kupplung des tosylierten Ethylenglycols mit dem acylierten Phenol, gefolgt von der Sulfonierung der erzeugten Verbindungen. Die chemische Struktur der synthetisierten Tenside wurde mit Elementaranalyse und verschiedenen spektroskopischen Verfahren wie FTIR und 1H-NMR bestimmt. Außerdem wurde die Oberflächenaktivität analysiert und Größen wie die Oberflächen- und Grenzflächenspannung, die Schaumhöhe, die Emulgierstärke, die kritische Mizellenkonzentration (CMC), die Leistung bestimmt. Die hergestellten Tenside wurden für die Synthese von Kupferoxid-Nanopartikel verwendet. Die Kristallstruktur, die mittlere Größe und die Morphologie der Teilchen wurden mit Hilfe der Röntgenstreuung (XRD) und Transmissionselektronenmikroskopie (TEM) untersucht.
References
1. Rosen, M. J.: Surfactants and Interfacial Phenomena, third ed., John Wiley and Sons, New York (2004) 415. 10.1002/0471670561.Ch12Search in Google Scholar
2. Kumar, B., Tikariha, D., Ghosh, K., Barbero, N. and Quagliotto, P.: Effect of polymers and temperature on critical micelle concentration of some gemini and monomeric surfactants. J. Chem. Thermodynamics62 (2013) 178. 10.1016/j.jct.2013.03.006Search in Google Scholar
3. Wang, Y. X., Han, Y. C., Huang, X., Cao, M. W. and Wang, Y. L.: Aggregation behaviors of a series of anionic sulfonate gemini surfactants and their corresponding monomeric surfactant. J. Colloid. Interface Sci.319 (2008) 534. 10.1016/j.jcis.2007.11.021Search in Google Scholar
4. Menger, F. M. and Littau, C. A.: Gemini surfactants: a new class of self-assembling molecules. J. Am. Chem. Soc.115 (1993) 10083. 10.1021/ja00075a025Search in Google Scholar
5. Menger, F. M., Keiper, J. S., Mbadugha, B. N. A., Caran, K. L. and Romsted, L. S.: Interfacial composition of gemini surfactant micelles determined by chemical trapping. Langmuir16 (2000) 9095. 10.1021/la0003692Search in Google Scholar
6. Renouf, P., Mioskowski, C., Lebeau, L., Hebrault, D. and Desmurs, J. R.: Dimeric Surfactants: First synthesis of an asymmetrical gemini compound. Tetrahedron Lett.39 (1998) 1357. 10.1016/S0040-4039(97)10835-8Search in Google Scholar
7. Zana, R., Levy, H., Papoutsi, D. and Beinert, G.: Micellization of two triquaternary ammonium surfactants in aqueous solution. Langmuir11 (1995) 3694. 10.1021/la00010a018Search in Google Scholar
8. Akimoto, K., Ishizuka, S., Yanagita, M., Nawa, Y., Paul, G. and Sakurai, T.: Thin film deposition of Cu2O and application for solar cells. Solar Energy 80 (2006) 715. 10.1016/j.solener.2005.10.012Search in Google Scholar
9. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. and Tarascon, J. M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion battery. Nature407 (2000) 496. 10.1038/35035045Search in Google Scholar PubMed
10. Zhang, H., Zhu, Q., Zhang, Y., Wang, Y., Zhao, L. and Yu, B.: One-Pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Advanced Functional Materials17 (2007) 2766. 10.1002/adfm.200601146Search in Google Scholar
11. Ng, S. Y. and Ngan, A. H. W.: Fabrication of nanometer-to-micron sized Cu2O single crystals by electrodeposition; ElectrochimicaActa56 (2011) 7686. 10.1016/j.electacta.2011.06.053Search in Google Scholar
12. Gou, L. and Murphy, C.: Controlling the size of Cu2O nanocubes from 200 to 25 nm. J. Materials Chemistry 14 (2004) 735. 10.1039/B311625ESearch in Google Scholar
13. Singh, D. P. and Ali, N.: Synthesis of TiO2 and CuO nanotubes and nanowires. Science of Advanced Materials 2 (2010) 295. 10.1166/sam.2010.1095Search in Google Scholar
14. Khodaei, M. M. and Nazari, E.: Tf2O-Mediated Direct and regiospecificpara-acylation of phenols with carboxylic acids. Bull. Korean Chem. Soc.32 (2011) 1784. 10.5012/bkcs.2011.32.5.1784Search in Google Scholar
15. Ouchi, M., Inoue, Y., Liu, Y., Nagamune, S., Nakamura, S., Wada, K. and Hakushi, S.: Convenient and efficient tosylation of oligoethylene glycols and the related alcohols in tetrahydrofuran water in the presence of sodium hydroxide. Bull. Chem. Soc. Jpn.63 (1990) 1260. 10.1246/bcsj.63.126046/bcsj.63.1260csj.63.1260Search in Google Scholar
16. Liu, X.-P., Feng, J., Zhang, L., Gong, Q.-T., Zhao, S. and Yu, J.-Y.: Synthesis and properties of a novel class of anionic gemini surfactants with polyoxyethylene spacers. J. Colloids and Surfaces A362 (2010) 39. 10.1016/j.colsurfa.2010.03.037Search in Google Scholar
17. KootiM. and MatouriL.: Fabrication of Nanosized Cuprous Oxide Using Fehling's Solution. J. Scientia Iranica17 (2010) 73.Search in Google Scholar
18. Mohamed, M. Z., Ismail, D. A. and Mohamed, A. S.: Synthesis and evaluation of new amphiphilic polyethylene glycol-based triblock copolymer surfactants. J. Surf. Det.8 (2005) 175. 10.1007/s11743-005-344-4Search in Google Scholar
19. Laurier, L. S.: Emulsion Fundamentals and applications in petroleum Industry; Advances in Chem. Series99 (1992) 231.Search in Google Scholar
20. Sjoblom, J.: Emulsions and Emulsion Stability: Surfactant Science Series/61 (Google eBook) (2005) 237. 10.1201/9781420028089Search in Google Scholar
21. Hikota, T. and Meguro, K.: Preparation and properties of sodium alkyl β-sulfopropionates. J. Am. Oil Chem. Soc.47 (1970) 158. 10.1007/BF02638742Search in Google Scholar
22. Takeshita, T., Shimohara, T. and Maeda, S.: Synthesis of EDTA monoalkyl amide chelates and evaluation of the surface-active properties. J. Am. Oil Chem. Soc.59 (1982) 104. 10.1007/BF02678725Search in Google Scholar
23. Al-Sabagh, A. M.: Surface parameters, biodegradability and antimicrobial activity of some amide ether carboxylates surfactants. J. Poly. Adv. Technol.11 (2000) 465. 10.1016/j.ejpe.2012.02.006Search in Google Scholar
24. Shuichi, M., Kazayasu, I., Sadao, Y., Kazuo, K. and Tsuyoshi, Y.: Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides. J. Am. Oil Chem. Soc.67 (1990) 996. 10.1007/BF02541865Search in Google Scholar
25. Rosen, M. J.: Surfactants and interfacial phenomena. Wiley, New York (1987) 72.Search in Google Scholar
26. Karthik, K. and Ponnuswamy, S.: Synthesis of Cu2O nanoparticles using simplified polyol process; J. Nano Vision1 (2011) 68.Search in Google Scholar
27. Bai, Y., Yang, T., Gu, Q., Cheng, G. and Zhang, R.: Shape control mechanism of cuprous oxide nanoparticles in aqueous colloidal solutions. J. Powder Technology227 (2012) 35,. 10.1016/j.powtec.2012.02.008.Search in Google Scholar
28. Zhu, Q., Zhang, Y., Wang, J., Zhou, F. and Chu, P. K.: Microwave Synthesis of Cuprous Oxide Micro-/Nanocrystals with Different Morphologies and Photocatalytic Activities. J. Mater. Sci. Technol.27 (2011) 289. 10.1016/S1005-0302(11)60064-9Search in Google Scholar
29. Bakshi, M. S., Sachar, S., Kaur, G., Bhandari, P., Kaur, G., Biesinger, M. C., Possmayer, F. and Petersen, N. O.: Dependence of Crystal Growth of Gold Nanoparticles on the Capping Behavior of Surfactant at Ambient Conditions. Cryst. Growth Des.8 (2008) 1713. 10.1021/cg8000043Search in Google Scholar
30. Bakshi, M., Thakur, P., Sachar, S., Kaur, G., Banipal, T. S., Possmayer, F. and Petersen, N. O.: Aqueous Phase Surfactant Selective Shape Controlled Synthesis of Lead Sulfide Nanocrystals. J. Phys. Chem. C111 (2007) 18087. 10.1021/jp075477cSearch in Google Scholar
31. Liu, Q., Guo, M., Nie, Z., Yuan, J., Tan, J. and Yao, Sh.: Spacer-mediated synthesis of size-controlled gold nanoparticles using geminis as ligands. Langmuir24 (2008) 1595. 10.1021/la702978zSearch in Google Scholar PubMed
© 2016, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Application
- Qualitative and Quantitative Analysis of Microbial Communities in Household Dishwashers in Germany
- Molecular Dynamics
- Mesoscopic Simulations on the Aggregate Behavior of Oligomeric Adamantane Surfactants in Aqueous Solutions
- Novel Surfactants
- Synthesis, Surface Activity and Application Properties of a Novel Ethoxylated Gemini Trisiloxane Surfactant
- Synthesis and Surface Active Properties of Novel Oligomer Betaine Surfactants
- Synthesis and Evaluation of Some Phenol-Based Anionic Gemini Amphiphiles: Studying Their Influence in the Preparation of Cu2O nanoparticles
- Scale Inhibition
- Preparation of a Multifunctional Terpolymer Inhibitor for CaCO3 and BaSO4 in Oil Fields
- Experimental and Theoretical Study on Corrosion Inhibition of Mild steel in 20 % Formic Acid Solution Using Schiff Base-Based Cationic Gemini Surfactant
- Physical Chemistry
- Dipeptide Glycyl-Glycine (Gly-Gly)–Ninhydrin Reaction: Effect of Alkanediyl-α,ω-bis(dimethylcetylammonium bromide) (16-s-16, s = 4, 5, 6) Gemini Surfactants on the Reaction Rate
- Interactions of Cellulase and Oleic Acid Solution Mixtures
- Effect of Surfactants on Hydrolysis of Mono-N-ethyl-o-toluidine Phosphate
- Thermodynamic Solution Properties of Benzalkonium Chloride in Aqueous and Ethanolic Media and its Interactions with Organized Assemblies of Anionic Surfactant Sodium Dodecyl Sulphate and Amino Acids
Articles in the same Issue
- Contents/Inhalt
- Contents
- Application
- Qualitative and Quantitative Analysis of Microbial Communities in Household Dishwashers in Germany
- Molecular Dynamics
- Mesoscopic Simulations on the Aggregate Behavior of Oligomeric Adamantane Surfactants in Aqueous Solutions
- Novel Surfactants
- Synthesis, Surface Activity and Application Properties of a Novel Ethoxylated Gemini Trisiloxane Surfactant
- Synthesis and Surface Active Properties of Novel Oligomer Betaine Surfactants
- Synthesis and Evaluation of Some Phenol-Based Anionic Gemini Amphiphiles: Studying Their Influence in the Preparation of Cu2O nanoparticles
- Scale Inhibition
- Preparation of a Multifunctional Terpolymer Inhibitor for CaCO3 and BaSO4 in Oil Fields
- Experimental and Theoretical Study on Corrosion Inhibition of Mild steel in 20 % Formic Acid Solution Using Schiff Base-Based Cationic Gemini Surfactant
- Physical Chemistry
- Dipeptide Glycyl-Glycine (Gly-Gly)–Ninhydrin Reaction: Effect of Alkanediyl-α,ω-bis(dimethylcetylammonium bromide) (16-s-16, s = 4, 5, 6) Gemini Surfactants on the Reaction Rate
- Interactions of Cellulase and Oleic Acid Solution Mixtures
- Effect of Surfactants on Hydrolysis of Mono-N-ethyl-o-toluidine Phosphate
- Thermodynamic Solution Properties of Benzalkonium Chloride in Aqueous and Ethanolic Media and its Interactions with Organized Assemblies of Anionic Surfactant Sodium Dodecyl Sulphate and Amino Acids