Effect of Surfactants on Hydrolysis of Mono-N-ethyl-o-toluidine Phosphate
-
Homeshwari Yadav
, S. A. Bhoite and A. K. Singh
Abstract
Hydrolysis of phosphate ester (Mono-N-ethyl-o-toluidine phosphate) in the presence of different surfactants has been studied at 303 K. The rate of reaction has been found to be first-order and fractional order kinetics with respect to [substrate] and [HCl] respectively. The cationic micelles of cetyltrimethylammonium bromide (CTAB), anionic micelles of sodium dodecyl sulfate (SDS) and nonionic micelles of Brij-35 enhanced the rate of reaction to a maximum value and thereafter, the increase in concentration of surfactant decreased the reaction rate. The rate of reaction increased with increase of dielectric constant of the medium. The variation in the rate of hydrolysis by micelles was treated by considering the Menger-Portnoy, Piszkiewicz's and Berezin kinetic models. The various thermodynamic parameters have also been evaluated. The added salts viz KCl, KNO3, K2SO4 enhanced the rate of reaction in the presence of cationic, anionic and non-ionic micelles. The kinetic parameters i. e. micellar phase (kΨ) and binding constant (KS) were determined from the rate (surfactant) profile.
Kurzfassung
Der Einfluss von unterschiedlichen Tensiden auf die Hydrolyse von Phosphatester (Mono-N-ethyl-o-toluidinphosphat) wurde bei 303 K untersucht. Die Reaktionsgeschwindigkeit zeigt ein Verhalten erster Ordnung. Eine gebrochene Ordnungskinetik wird für die Konzentration des Substrats [Substrat] und der Salzsäure [HCl] beobachtet. Die kationischen Mizellen des Cetyltrimethylammoniumbromid (CTAB), die anionischen Mizellen von Natriumdodecylsulfat (SDS) und die nicht-ionischen Mizellen von Brij-35 erhöhten die Reaktionsgeschwindigkeit. Nach Erreichen eines Maximums nahm die Reaktionsgeschwindigkeit mit zunehmender Tensidkonzentration wieder ab. Die Reaktionsgeschwindigkeit zeigte auch eine Zunahme mit ansteigender dielektrischer Konstante des Agens. Die Änderung der Hydrolysegeschwindigkeit durch die Mizellen wurde im Rahmen der kinetischen Modelle von Menger-Portnoy, Piszkiewicz und Berezin analysiert. Die verschiedenen thermodynamischen Parameter wurden ebenfalls ermittelt. Der Zusatz von Salzen wie KCl, KNO3, K2SO4 erhöhte die Reaktionsgeschwindigkeit in Gegenwart von kationischen, anionischen und nicht-ionischen Mizellen. Die kinetischen Parameter wie die mizellare Phase (kΨ) und die Bindungskonstante (KS) wurden anhand des Tensid-Geschwindigkeitsprofils bestimmt.
References
1. Hunter, T.: Why nature chose phosphate to modify proteins. Phil. Trans. R. Soc. B367 (2012) 2513–2516. 10.1098/rstb.2012.0013.Search in Google Scholar
2. Bowler, M. W., Cliff, M. J., Waltho, J. P. and Blackburn, G. M.: Why did Nature select phosphate for its dominant roles in biology. New J. Chem.34 (2010) 784. 10.1039/b9nj00718kSearch in Google Scholar
3. Balakrishna, A., Reddy, C. S., Naik, S. K., Manjunath, M. and Raju, C. N.: Synthesis, characterization and bio-activity of some new œ-aminophosphonates, Bull. Chem. Soc. Ethiop.23(1) (2009) 69–75. 10.4314/bcse.v23i1.21300Search in Google Scholar
4. Van der Veen, I. and de Boer, J.: Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and Analysis. Chemosphere10 (2012) 1119–1153. 10.1016/j.chemosphere2012.03.067Search in Google Scholar
5. Taotao, Q., Xuechuan, W. and Longfang, R.: Study on production of lanonol phosphates by a sustained-release method. JSLTC10 (2007) 9–12. 10.1007/s11743-006-1001-7Search in Google Scholar
6. PrasadB.R., Plotnikov, N. V. and Warshel, A.: Resolving uncertainties about phosphate hydrolysis pathways by careful free energy mapping. J. Phys. Chem. B117 (2013) 153–163. 10.1021/ip309778nSearch in Google Scholar
7. Moulik, S. P.: Micelles: Self-organized surfactant assemblies. Curr. Sci.71 (1996) 368–376. 10.1155/2011/326472.Search in Google Scholar
8. Jan, B. M., Jeirani, Z., Ali, B. S., Noor, I. M., See, C. H. and Saphanuchart, W.: Formulation, optimization and application of triglyceride microemulsion in enhanced oil recovery. Industrial crops & products43 (2013) 6–14. 10.1016/j.indcrop.2012.07.002Search in Google Scholar
9. Bunton, C. A., Robinson, L., Schaak, J. and Stern, M. F.: Catalysis of nucleophilic substitutions by micelle of dicationic detergents. J. Org. Chem.36 (16) (1971) 2346–2350. 10.1021/jo00815a033Search in Google Scholar
10. Devinsky, F., Masarova, L. and Lacko, I.: Surface activity and micelle formation of some new bisquaternary ammonium salts, J. Colloid Interface Sci.105 (1985) 235–239. 10.1016/0021-9797(85903637)/110Search in Google Scholar
11. Zhu, Y. P., Masuyama, A. and Okahara, M.: Preparation and surface active properties of amphiphatic compounds with two sulfate groups and two lipophilic alkyl chains, J. Am. Oil Chem. Soc.67 (1990) 459–463. 10.1007/Bf02638962Search in Google Scholar
12. Hait, S. K. and Moulik, S. P.: Gemini surfactants: A distinct class of self-assembling moleculesCurrentScience. 82 (9) (2002) 1101–1111. curr sci/may/102002/1101Search in Google Scholar
13. Bunton, C. A., Nome, F., Quina, F. H. and Romsted, L. S.: Ion binding and reactivity at charged aqueous interfaces, Acc Chem Res.24 (12) (1991) 357–364. 10.1021/ar0001201001Search in Google Scholar
14. Bunton, C. A., Yao, J. and Romsted, L. S.: Current world literature. Curr. Opin. Colloid Interface Sci.2 (1997) 662. 10.1016/s1359-0294(97)80059-3Search in Google Scholar
15. Fendler, J. H.: Membrane mimetic chemistry. John Wiley, New York (1982). Chem. Rev. 87 (1987) 877. 10.1021/cr00081a002Search in Google Scholar
16. Srivastava, S. K. and Katiyar, S. S.: Quantitative treatment of the effect of counterions on ctab-catalyzed reactions of stabilized carbonium ions with cyanide ion. Int. J. Chem. Kinetics.14 (1982) 1007–1015. 10.1002/kin.550140906Search in Google Scholar
17. Grcitzel, M. and Kalyansundaram, K.: Kinetics and catalysis in micro heterogeneous systems. Marcel Dekker, New York (1991). 10.1021/la00047a600Search in Google Scholar
18. Singh, T. R., Luwang, M. N. and Srivastava, S. K.: Gemini surfactants: A distinct class of self-assembling molecules. Reac. Kinet. Mech. Cat.104 (2011) 17–26. 10.1007/s11144-011-0332-1Search in Google Scholar
19. Fubin, J., Bingying, J., Yong, C. and Xiancheng, Z.: Metallomicellar catalysis: effects of bridge-connecting ligands on the hydrolysis of PNPP catalyzed by Cu (II) complexes of ethoxy-diamine ligands in micellar solution. J. Mol. Catal.210 (2004) 9–16. 10.1016/jmolcata.2003.07.019Search in Google Scholar
20. Ahmad, N., Kumar, P., Hashmi, A. A. and Khan, Z.: Effect of cationic micelles of cetyltrimethylammonium bromide on the oxidation of thiourea by permanganate. Colloids Surf. A315 (1–3) (2008) 226–231. 10.1016/j.colsurfa.2007.08.001Search in Google Scholar
21. Andrabi, S. M. Z., Malik, M. A. and Khan, Z.: Permangnate partitioning in cationic micelles of cetyltrimethylammonium bromide: A kinetic study of D-fructose. Colloids Surf. A299 (1–3) (2007) 58–64. 10.1016/j.colsurfa.2006.11.018Search in Google Scholar
22. Ali, M. S. and Khan, Z.: Micelle-assisted cerium (IV) oxidation of L-sorbose in aqueous sulfuric acidColloid Polym. Sci.285 (2007) 745–752. 1007/s00396-006-1610-8Search in Google Scholar
23. Patil, S., Katre, Y. R. and Singh, A. K.: Effect of cationic micelle on the kinetics of citric acid by N-bromopthalimide in acidic medium. J. Dispersion Sci. Technol.30 (2) (2009) 159. 10.1080/01932690802498070Search in Google Scholar
24. Malik, M. A. and Khan, Z.: Submicellar catalytic effect of cetyltrimethylammonium bromide in the oxidation of ethylenediamine-tetraacetic acid by MnO4-. Colloids Surf. B. 64 (2008) 42–48. 10.1016/j.colsurb.2008.01.003Search in Google Scholar
25. Patil, S.: Micellar catalysis of oxidation of glycolic acid by N-bromopthalimide. Colloid Journal74(5) (2012) 582–588. 10.1134/S1061933X12050079Search in Google Scholar
26. Qian, J., Qian, S. and Guo, R.: The effects of anionic and cationic surfactants on the hydrolysis of sodium barbital. J. Surf. and Det.8(3) (2005) 253–256. 10.1007/s11743-005-0354-2Search in Google Scholar
27. Tang, Y., Du, B., Yang, J. and Zhang, Y.: Temperature effects on surface acitivity and application in oxidation of toluene derivatives of CTAB-SDS with KMnO4. J. Chem. Sci. 118 (3) (2006) 281–285. PC3709.pdf-281Search in Google Scholar
28. Sharma, V.; Sharma, K. V. and Bhagwat, V. W.: Catalytic effect of cetyltrimethyl ammonium bromide on the Oxidation of Triethylene glycol by Chloramine-T in Acidic Medium. E. J. Chem.5(4) (2008) 894–903. 402304-1Search in Google Scholar
29. Hernawan, Purwono B., and Wahyunngsih, T. D.: Micellar Catalytic Effect of Cetyltrimethylammonium Bromide on O-Allylation of Eugenal by Allyl Bromide. Inter. J. Engineering & Technology IJET-IJENS.12(1) (2012) 1–4. 122401-7979Search in Google Scholar
30. Ahmad, M. and Subramani, K.: Kinetics of oxidation of cobalt (III) complexes of a acids by hydrogen peroxide in the presence of surfactants. E. J. Chem.5(1) (2008) 43. 10.1155/2008/673042Search in Google Scholar
31. Patil, S., Katre, Y. R. and Singh, A. K.: A kinetic and mechanistic study on the oxidation of hydroxy acids by N-bromopthalimide in the presence of a micellar system. J. Surfact. Deterg.10 (2007) 175–184. 10.1007/s11743-007-1028-4Search in Google Scholar
32. Din, K. U. and Khan, S. Z.: Kinetics and mechanism of the reduction of colloidal manganese dioxide by D-fructose. Colloids & Surface A. Physico-chemical and Engineering Aspects248 (1–3) (2004) 25–31. 10.1016/j.colsurfa.2004.08.020.Search in Google Scholar
33. Duynstee, E. F. J. and Grunwald, E. J. J.: Organic reactions occurring in or on micelles. 1. Reaction rate studies of the alkaline fading of triphenylmethane dyes and sulfonphthalein indicators in the presence of detergent salts. Am. Chem. Soc.81 (1959) 4540–4542. 10.1021/ja01526a025Search in Google Scholar
34. Ionescu, G. L. and Souza, F. E.: Micellar catalyzed reaction of a phosphate ester: effect of the dielectic constant of the medium. Colloids Surfacese A: Physicochem. Eng. Aspects149 (1999) 609–615. 10.1016/s0927-7757(98)00670-0Search in Google Scholar
35. Couderc, S. and Toullec, J.: Catalysis of phosphate triester hydrolysis by micelles of hexadecyltrimethylammonium anti-pyruvaldehyde 1-oximate. Langmuir17 (2001) 3819. 10.1021/la001438fSearch in Google Scholar
36. Masurier, M., Estour, F., Froment, M.-T., Lefevre, F., Debouzy, J. C., Brasme, B., Masson, P. and Lafont, O.: Synthesis of 2-substituted B-cyclodexrin derivatives with a hydrolytic activity against the organophosphorylester paraoxon. J. Med. Chem.40 (2005) 615–623. 10.1016/j.ejmech.2005.02.008Search in Google Scholar PubMed
37. Rio, L. G., Leis, J. R., Mejuto, J. C. and Lorenzo, M. P.: Microemulsions as microreactors in physical chemistry. Pure Appl. Chem.79 (6) (2007) 1111–1123. 10.135/pac200779061111Search in Google Scholar
38. Armentrout, R. S., Richardson, M. F. and Mc-cormic, C. L.: Wastewater remediation: utilization of environmentally responsive polymeric surfactants for the sequestration of p-Cresol. Surfactant based separations, ACS Publication740 (2009) 113–122 chap-8. 10.1021/bk-2000-0740.ch008Search in Google Scholar
39. Shylaja, S., Ramesh, K., Reddy, P. G., Rajanna, K. C. and Saiprakash, P. K.: Poly ethylene glycols (PEG) and micelles as efficient catalysts for the oxidation of xanthine derivatives under conventional and Non-Conventional Conditions. Inter. J. Organic Chemistry1(4) (2011) 148–157. 10.4236/ijoc.2011.14022Search in Google Scholar
40. Bairagi, B., Bhoite, S. A. and Singh, A. K.: Micellar effect on hydrolysis of 4-methyl-2-nitroaniline phosphate. Colloid Journal76 (6) (2014) 765–773. 10.1134/S1061933X14060027Search in Google Scholar
41. Allen, R. J. L.: The estimation of phosphorus. Biochem. J.34 (1940) 858–865. bj/034/bj0340858.htmSearch in Google Scholar
42. Chanley, J. D. and Feageson, E. J.: A study of the hydrolysis of phosphoramides, I. Aromatic phosphoramides. J. Am. Chem. Soc.80 (1985) 2686–2691. 10.1021/ja015440025Search in Google Scholar
43. Al-Sabagh, A. M., Tantawy, N. S., Nasser, N. M. and Mishrif, M. R.: Corrosion inhibition efficiency in relation to micellar interaction parameters of cationic/nonionic surfactant mixtures for carbon steel pipelines in 1 M HCl solution. J. Dispersion Sci. Technol.30 (2009) 1411–1423. 10.1080/01932690902735306Search in Google Scholar
44. Menger, F. M. and Portnoy, C. E.: Chemistry of reactions proceeding inside molecular aggregates. J. Am. Chem. Soc.89 (18) (1967) 4698–4703. 10.1021/ja00994a023Search in Google Scholar
45. Hill, A. V.: The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. J. Physiol.40 (2004) (1910) 4–7. 10.1113/JPhysiol.1910.sp001366/77Search in Google Scholar
46. Piszkiewic's, D.: Positive cooperativity in micelle catalyzed reaction. J. Am. Chem. Soc.99 (1977) 1550–1557. 10.1021/ja00447a044Search in Google Scholar PubMed
47. Berezin, I. V., Martinek, K. and Yatsimirski, A. K.: Physicochemical foundations of micellar catalysis. Russ. Chem. Rev.42 (10) (1973) 787. 10.1070/RC1973v042n10ABEH002744Search in Google Scholar
48. Yadav, H. and Bhoite, S. A.: Acid catalyzed hydrolysis of di-2-methoxy-4-nitroaniline phosphate. Inter. J. Scientific Research3(6) (2014) 63–65. 10.15373/22778179Search in Google Scholar PubMed PubMed Central
© 2016, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Application
- Qualitative and Quantitative Analysis of Microbial Communities in Household Dishwashers in Germany
- Molecular Dynamics
- Mesoscopic Simulations on the Aggregate Behavior of Oligomeric Adamantane Surfactants in Aqueous Solutions
- Novel Surfactants
- Synthesis, Surface Activity and Application Properties of a Novel Ethoxylated Gemini Trisiloxane Surfactant
- Synthesis and Surface Active Properties of Novel Oligomer Betaine Surfactants
- Synthesis and Evaluation of Some Phenol-Based Anionic Gemini Amphiphiles: Studying Their Influence in the Preparation of Cu2O nanoparticles
- Scale Inhibition
- Preparation of a Multifunctional Terpolymer Inhibitor for CaCO3 and BaSO4 in Oil Fields
- Experimental and Theoretical Study on Corrosion Inhibition of Mild steel in 20 % Formic Acid Solution Using Schiff Base-Based Cationic Gemini Surfactant
- Physical Chemistry
- Dipeptide Glycyl-Glycine (Gly-Gly)–Ninhydrin Reaction: Effect of Alkanediyl-α,ω-bis(dimethylcetylammonium bromide) (16-s-16, s = 4, 5, 6) Gemini Surfactants on the Reaction Rate
- Interactions of Cellulase and Oleic Acid Solution Mixtures
- Effect of Surfactants on Hydrolysis of Mono-N-ethyl-o-toluidine Phosphate
- Thermodynamic Solution Properties of Benzalkonium Chloride in Aqueous and Ethanolic Media and its Interactions with Organized Assemblies of Anionic Surfactant Sodium Dodecyl Sulphate and Amino Acids
Articles in the same Issue
- Contents/Inhalt
- Contents
- Application
- Qualitative and Quantitative Analysis of Microbial Communities in Household Dishwashers in Germany
- Molecular Dynamics
- Mesoscopic Simulations on the Aggregate Behavior of Oligomeric Adamantane Surfactants in Aqueous Solutions
- Novel Surfactants
- Synthesis, Surface Activity and Application Properties of a Novel Ethoxylated Gemini Trisiloxane Surfactant
- Synthesis and Surface Active Properties of Novel Oligomer Betaine Surfactants
- Synthesis and Evaluation of Some Phenol-Based Anionic Gemini Amphiphiles: Studying Their Influence in the Preparation of Cu2O nanoparticles
- Scale Inhibition
- Preparation of a Multifunctional Terpolymer Inhibitor for CaCO3 and BaSO4 in Oil Fields
- Experimental and Theoretical Study on Corrosion Inhibition of Mild steel in 20 % Formic Acid Solution Using Schiff Base-Based Cationic Gemini Surfactant
- Physical Chemistry
- Dipeptide Glycyl-Glycine (Gly-Gly)–Ninhydrin Reaction: Effect of Alkanediyl-α,ω-bis(dimethylcetylammonium bromide) (16-s-16, s = 4, 5, 6) Gemini Surfactants on the Reaction Rate
- Interactions of Cellulase and Oleic Acid Solution Mixtures
- Effect of Surfactants on Hydrolysis of Mono-N-ethyl-o-toluidine Phosphate
- Thermodynamic Solution Properties of Benzalkonium Chloride in Aqueous and Ethanolic Media and its Interactions with Organized Assemblies of Anionic Surfactant Sodium Dodecyl Sulphate and Amino Acids