Home Magnetic Properties of Polyaniline/ZFe2O4 Nanocomposites Synthesized in CTAB as Surfactant and Ionic Liquid
Article
Licensed
Unlicensed Requires Authentication

Magnetic Properties of Polyaniline/ZFe2O4 Nanocomposites Synthesized in CTAB as Surfactant and Ionic Liquid

  • Abdelkader Benabdellah , H. Belarbi , Hocine Ilikti , Tayeb Benabdallah and Mustapha Hatti
Published/Copyright: January 7, 2016
Become an author with De Gruyter Brill

Abstract

Polyaniline (PANI-EB) containing ZFe2O4 (Z is an element in a divalent state; Z2+ = Fe2+, Co2+, Ni2+, Mn2+, and Zn2+) nanocomposites were successfully synthesized by using 1-butyl-3-methyl-imidazolium bromide [BMIM]Br and cetyl trimethylammonium bromide (CTAB) via in situ polymerization. Structural, morphological, spectroscopic and magnetic properties were investigated by transmission electron microscopy (TEM), X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM) respectively. The presence of polyaniline, [BMIM]Br and CTAB on the surface of the ZFe2O4 nanoparticles was confirmed with FTIR. The purity of the products was proved by XRD. The results of thermogravimetric analysis indicated that the addition of ZFe2O4 nanoparticles to PANI improved the thermal stability of the nanocomposites. The magnetization curves verify that the sample has ferromagnetic behavior at the temperature of 400 K. Magnetic measurements revealed that product has uniaxial anisotropy instead of expected cubic anisotropy according to the Stoner-Wohlfarth model.

Kurzfassung

Polyanilin (PANI-EB)/ZFe2O4-Nanocomposite (Z ist ein divalentes Ion; Z2+ = Fe2+, Co2+, Ni2+, Mn2+, und Zn2+) wurden erfolgreich mittels 1-Butyl-3-methylimidazoliumbromid ([BMIM]Br) und Cetyltrimethylammoniumbromid (CTAB) in einer in situ-Polymerisation synthetisiert. Die strukturellen, morphologischen, spektroskopischen und magnetischen Eigenschaften wurden mit der Transmissionselektronenmikroskopie (TEM), der Pulverröntgendiffraktomrie (XRD), der Fourier-Transformations-Infrarotspektroskopie (FT-IR) und der Vibrating Sample Magnetometry (VSM) untersucht. Die Anwesenheit von Polyanilin, [BMIM]Br und CTAB auf der Oberfläche der ZFe2O4-Nanopartikel wurde mit der FT-IR bestätigt. Die Reinheit der Produkte wurde mit der XRD überprüft. Die Ergebnisse der thermogravimetrischen Analyse ergaben, dass die Addition von ZFe2O4-Nanopartikeln zu PANI die thermische Stabilität der Nanopartikel verbesserte. Die Magnetisierungskurven bekräftigten, dass die Proben ein ferromagnetisches Verhalten bei einer Temperatur von 400 K besitzen. Die magnetischen Messungen zeigten, dass das Produkt eine uniaxiale Anisotropie hat anstatt der nach dem Stoner-Wohlfarth-Modell erwarteten kubischen Anisotropie.


*Correspondence address, Prof. Abdelkader Benabdellah, Synthesis and Catalysis Laboratory, Ibn Khaldoun University of Tiaret, Algeria, Renouvelables, CDER, Bou Ismail, 42415, W. Tipaza, Algeria. E-Mail:

Dr. Abdelkader Benabdellah was born in juin 1979. He completed his Post Graduation in 2003. He completed his Magister in 2006 and his Doctorate in 2013 from University of sciences and technology Oran (Algeria). At present he is working as a research professor at Ibn Khaldun University of Tiaret (Algeria). His area of research is “electrical systems based on conducting polymers and ionic liquids”.

Pr. H. Belarbi was born in 1965. He completed his Post Graduation in 1990. After completing his Ph.D. in 1997 from Montpellier II University France, he worked as Associate Professor in the Department of physics of Ibn Khaldoun University. At present he is working as full Professor and Dean of college of science and technology and materials science, Ibn Khaldoun University, Tiaret, (Algeria). His area of research is “electrical systems based on conducting polymers and ionic liquids”.

Pr. Hocine Ilikti was born in July 1958. He completed his Post Graduation in 1985. After completing his Magister 1992 and Doctorat in 2004 from University of sciences and technology Oran Algeria and University of Claude BERNARD, Lyon France, He is at present working as Professor in University of sciences and technology Oran Algeria. His area of research is “electrocatalytic hydrogenation of electrodes modifying by conductor polymers”.

Dr. Tayeb Benabdallah was born in 1957. He completed his Post Graduation in 1982. He completed his Ph.D. in 1988 at University of AIX-Marseille 2 France under the supervision Dr Dugulile Metti. At present he is working as Professor in University of sciences and technology Oran/Algeria.

Dr. Mustapha Hatti was born in November 1960. He completed his Post Graduation in 1988 after completing his Magister 2006 and Doctorat in 2010 from University of sciences and technology Oran (Algeria). At present he is working as Head of Division at Solar Equipment Development Unit, Bou Ismail, Tipaza, (Algeria). His area of research is “control and management of hybrid energy systems and fuel cells”.


References

1. Lagashetty, A. and VenkataramanA.: Polymer nanocomposites, Resonance10 (2005)) 4960. 10.1007/BF02867106Search in Google Scholar

2. Ventra, M. D., Evoy, S. and HeflinJ. R.: Introduction to Nanoscale Science and Technology, Kluwer Academic Publishers (2004). 10.1007/b119185Search in Google Scholar

3. Aoshima, S., Costa, F. R.Fetters, L., Heinrich, J., Kanaoka, G., Radulescu, S., Richter, A., Saphiannikova, D. and Wagenknecht, M.: Wax Crystal Control Nanocomposites Stimuli-Responsive Polymers. “Advances in Polymer Science”, Springer-VerlagBerlin Heidelberg210, (2008). http://link.springer.com/book/10.1007%2F978-3-540-75500-5.Search in Google Scholar

4. Jiang, J., Li, L. and Zhu, M.: Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization, Reactive & Functional Polymers68 (2008)) 5762. 10.1016/j.reactfunctpolym.2007.10.010Search in Google Scholar

5. Ilikti, H., Benabdallah, T., Boukreris, S., Aouad, M. R. and El Ashr, E. S. H.: Electrocatalytic Hydrogenation and Hydrogenolysis of Aromatic Halides by Raney Nickel in the Presence of Different Surfactants, Tenside Surf. Det.45 (2008)) 14. 10.3139/113.100369Search in Google Scholar

6. Mornet, S., Vasseur, S., Grasset, F., Veverka, P., Goglio, G., Demourgeus, A., Portier, J., Pollert, E. and Duguet, E.: Magnetic nanoparticle design for medical applications, Progress in Solid State Chem34(2–4) (2006) 237. 10.1016/j.progsolidstchem.2005.11.010Search in Google Scholar

7. Vatta, L. L., Sanderson, R. D. and Koch, K. R.: Magnetic nanoparticles: Properties and otential applications; Pure Appl. Chem78 (2006)) 1793. 10.1351/pac200678091793Search in Google Scholar

8. Li, L., Jiang, J. and Xu, F.: Synthesis and ferrimagnetic properties of novel Sm-substituted LiNi ferrite-polyaniline nanocomposite; Materials Letters61 (2007)) 10911096. 10.1016/j.matlet.2006.06.061Search in Google Scholar

9. Benabdellah, A., Ilikti, H., Belarbi, H., Fettouhi, B., Ait Amer, A. and Hatti, M.: Effects of The Synthesis Temperature on Electrical Properties of Polyaniline and their Electrochemical Characteristics onto Silver Cavity Microelectrode Ag/C-EM, Int. J. Electrochem. Sci.6 (2011)) 17471759.Search in Google Scholar

10. Li, L., Liu, H., Wang, Y., Jiang, J. and Xu, F.: Preparation and magnetic properties of Zn-Cu-Cr-La ferrite and its nanocomposites with polyaniline, Journal of Colloid and Interface Science321 (2008)) 265271. 10.1016/j.jcis.2008.02.013Search in Google Scholar

11. MacDiarmid, A. G. and Epstein, A. J.: Secondary doping in polyaniline, Physica B354 (2004)) 224227. 10.1016/0379-6779(94)02374-8Search in Google Scholar

12. Aphesteguy, J. C. and Jacobo, S. E.: Composite of polyaniline containing iron oxides, Physica B354 (2004)) 224227. 10.1016/j.physb.2004.09.053Search in Google Scholar

13. Moghaddam, A. B. and Nazari, T.: Preparation of Polyaniline/Nanometer-scale Alumina Composite by the Potential Cycling Method, Int. J. Electrochem. Sci.3 (2008)) 768776.Search in Google Scholar

14. Benabdellah, A., Belarbi, H., IliktiH.FettouhiB. and HattiM.: Electrical Properties of PANI/Chalcogenide Junctions Doped with Ionic Liquids Anions, Int. J. Tenside Surf Det.49 (2012)) 241246. 10.3139/113.110188Search in Google Scholar

15. Jacobo, S. E., Aphesteguy, J. C., Anton, R. L., Schegoleva, N. N. and Kurlyandskaya, G. V.: Influence of the preparation procedure on the properties of polyaniline based magnetic composites, European Polymer Journal43 (2007)) 13331346. 10.1016/j.eurpolymj.2007.01.024Search in Google Scholar

16. Ma, Z., Yu, J. H. and Dai, S.: Preparation of Inorganic Materials Using Ionic Liquids, Adv. Mater22 (2010)) 261. 10.1002/adma.200900603Search in Google Scholar

17. Fetouhi, B., Benabdellah, A., Belarbi, H., Ilikti, H. and Benabdallah, T.: Junction Characteristics System Based on Composite Organic Semiconductors: polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid, Int. J. Tenside Surf Det.51 (2014)) 541546. 10.3139/113.110341Search in Google Scholar

18. Kavas, H., Günay, M., Baykal, A., Toprak, M. S., Sozeri, H. and Aktas, B.: Negative Permittivity of Polyaniline-Fe3O4 Nanocomposite, J. Inorg. Organomet. Polym.23 (2013)) 306. 10.1007/s10904-012-9776-7Search in Google Scholar

19. Pringle, J. M., Ngamna, O., Lynam, C., Wallace, G.G., Forsyth, M. and MacFarlane, D. R.: Conducting Polymers with Fibrillar Morphology Synthesized in a Biphasic Ionic Liquid/Water System, Macromolecules (2007) 2702. 10.1021/ma062483iSearch in Google Scholar

20. Kumar, A., Murugesan, S., Pushparaj, V., Xie, J., Soldano, C., John, G., Nalamasu, O., Ajayan, P. M. and Linhardt, R.: Conducting Organic-Metallic Composite Submicrometer Rods Based on Ionic Liquids, J. Small3 (2007)) 429. 10.1002/smll.200600442Search in Google Scholar

21. Baykal, A., Günay, M., Toprak, M. S. and Sozeri, H.: Effect of ionic liquids on the electrical and magnetic performance of polyaniline-nickel ferrite nanocomposite, Mater. Res. Bull.48 (2013)) 378. 10.1016/j.materresbull.2012.10.039Search in Google Scholar

22. Leng, C., Wei, J., Liu, Z. and Shi, J.: Influence of imidazolium-based ionic liquids on the performance of polyaniline-CoFe2O4 nanocomposites, Alloy. Compd509 (2011)) 3052. 10.1016/j.jallcom.2010.11.197Search in Google Scholar

23. Wan, M. and Fan, J.: Synthesis and ferromagnetic properties of composites of a water-soluble polyaniline copolymer containing iron oxide, Polym. Sci. part A: Polym. Chem.36 (1998)) 2749. 10.1002/(SICI)1099-0518(19981115)36:15%3C2749::AID-POLA11%3E3.0.CO;2-OSearch in Google Scholar

24. Qu, Y., Yang, H., Yang, N., Fan, Y., Zhu, H. and Zou, G.: The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles, Materials Letters60 (2006)) 35483552. 10.1016/j.matlet.2006.03.055Search in Google Scholar

25. Gonzalez, M. P., Beesley, A. M., Yoshida, M. M., Cobas, L. F. and Aquino, J. A. M.: Comparative study of the microstructural and magnetic properties of spinel ferrites obtained by co-precipitation, Journal of Alloys and Compounds369 (2004)) 190194. 10.1016/j.jallcom.2003.09.101Search in Google Scholar

26. Jiang, J., Li, L. and Xu, F.: In situ synthesis and characterization of LiNi0.5La0.08Fe1.92O4-polyaniline core-shell nanocomposites, Journal of Physics and Chemistry of Solids68 (2007)) 16561662. 10.1016/j.jpcs.2007.04.007Search in Google Scholar

27. Guo, H., Zhu, H., Lin, H. and Zhang, J.: Polyaniline/Fe3O4 nanocomposites synthesized under the direction of cationic surfactant, Materials Letters62 (2008)) 21962199. 10.1016/j.matlet.2007.11.047Search in Google Scholar

28. Wejrzanowski, T., Pielaszek, R., Opalinska, A., Matysiak, H., Łojkowski, W. and Kurzydłowski, K. J.: Quantitative methods for nanopowders characterization, Appl. Surf. Sci.253 (2006)) 204. 10.1016/j.apsusc.2006.05.089Search in Google Scholar

29. Durmus, Z., Sozeri, H., Toprak, M. S. and Baykal, A.: The effect of condensation on the morphology and magnetic properties of modified barium hexaferrite (BaFe12O19), Nano-Micro Letters3 (2011)) 108114. nml.v3i2.p108-114.Search in Google Scholar

30. Xue, W., Fang, K., Qiu, H., Li, J. and Mao, W.: Electrical and magnetic properties of the Fe3O4-polyaniline nanocomposite pellets containing DBSA-doped polyaniline and HCl-doped polyaniline with Fe3O4 nanoparticles, Synthetic Metals156 (2006)) 506509. j.synthmet.2005.06.021.Search in Google Scholar

31. Hu, C., Gao, Z. and Yang, X.: One-pot low temperature synthesis of MFe2O4 (M=Co, Ni, Zn) superparamagnetic nanocrystals, Journal of Magnetism and Magnetic Materials320 (2008)) L70L73. 10.1016/j.jmmm.2007.12.006Search in Google Scholar

32. Deng, J., Ding, X., Zhang, W., Peng, Y., Wang, J., Long, X., Li, P. and Chan, A.: Magnetic and conducting Fe3O4-cross-linked polyaniline nanoparticles with core-shell structure, Polymer43 (2002)) 21792184. 10.1016/S0032-3861(02)00046-0Search in Google Scholar

33. Li, G-y., Jiang, Y-r., Huang, K-l., Ding, P. and Chen, J.: Synthesis and characterization of Co2+:LiGa5O8 nanocrystals by sol-gel method, Journal of Alloys and Compounds466 (2008)) 451456. 10.1016/j.jallcom.2007.07.014Search in Google Scholar

34. Topkaya, R., Akman, O., Kazan, S., Aktas, B. Z., Durmus, A. and Baykal, J.: Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles, Nanopart. Res.14 (2012)) 1156. 10.1007/s11051-012-1156-2Search in Google Scholar

35. Bharathi, K. K., Tackett, R. J., Botez, C. E. and Ramana, C. V.: Coexistence of spin glass behavior and long-range ferrimagnetic ordering in La- and Dy-doped Co ferrite, J. Appl. Phys.109 (2011)) 07A510. 10.1063/1.3562201Search in Google Scholar

36. Sozeri, H., Kurtan, U., Topkaya, R., Baykal, A. and Toprak, M. S.: Polyaniline (PANI)-Co0.5Mn0.5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation, Ceram. Int.39 (2013)) 5137. 10.1016/j.ceramint.2012.12.009Search in Google Scholar

37. Parekh, K. and Upadhyay, R. V.: Static and dynamic magnetic properties of monodispersed Mn[sub 0.5]Zn[sub 0.5]Fe[sub 2]O[sub 4], J. Appl. Phys.107 (2010)). 053907. 10.1063/1.3310807Search in Google Scholar

38. Kodama, R. H., Berkowitz, A. E. and McNiffJr, E. J.: Surface Spin Disorder inNiFe2O4Nanoparticles, S. Foner., Phys. Rev. Lett.77 (1996)) 394. 10.1103/PhysRevLett.77.394Search in Google Scholar PubMed

39. Laska, J. and Widlarz, J.: Spectroscopic and structural characterization of low molecular weight fractions of polyaniline, Polymer46 (2005)) 1485. 10.1016/j.polymer.2004.12.008Search in Google Scholar

40. Meiklejohn, W. H.: Experimental Study of the Coercive Force of Fine Particles, Rev. Modern Phys.25 (1953)) 302. 10.1103/RevModPhys.25.302Search in Google Scholar

41. Chikazumi, S., Taketomi, S., Ukila, M., Mizukami, M., Miyajima, H. and Setogawa, M.: Physics of magnetic fluids, J. Magn. Magn. Mater65 (1987)) 245. 10.1016/0304-8853(87)90043-6Search in Google Scholar

42. Kodama, R. H., Berkowitz, A. E., Mcniff, E., Foner, J. and Foner, S.: Surface Spin Disorder inNiFe2O4Nanoparticles, Phys. Rev. Lett.77 (1996)) 394. 10.1103/PhysRevLett.77.394Search in Google Scholar

43. Xiao, Q., Tan, X., Ji, L. and Xue, J.: Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route, Synthetic Metals157 (2007)) 784791. 10.1016/j.synthmet.2007.08.010Search in Google Scholar

Received: 2015-01-11
Accepted: 2015-08-14
Published Online: 2016-01-07
Published in Print: 2015-11-16

© 2015, Carl Hanser Publisher, Munich

Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110401/html?srsltid=AfmBOook8VtIOolB47maL-zrI9pQF0v_kXefZJ5qKC_1zxpRjmfXwbfH
Scroll to top button