Magnetic Properties of Polyaniline/ZFe2O4 Nanocomposites Synthesized in CTAB as Surfactant and Ionic Liquid
-
Abdelkader Benabdellah
Abstract
Polyaniline (PANI-EB) containing ZFe2O4 (Z is an element in a divalent state; Z2+ = Fe2+, Co2+, Ni2+, Mn2+, and Zn2+) nanocomposites were successfully synthesized by using 1-butyl-3-methyl-imidazolium bromide [BMIM]Br and cetyl trimethylammonium bromide (CTAB) via in situ polymerization. Structural, morphological, spectroscopic and magnetic properties were investigated by transmission electron microscopy (TEM), X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM) respectively. The presence of polyaniline, [BMIM]Br and CTAB on the surface of the ZFe2O4 nanoparticles was confirmed with FTIR. The purity of the products was proved by XRD. The results of thermogravimetric analysis indicated that the addition of ZFe2O4 nanoparticles to PANI improved the thermal stability of the nanocomposites. The magnetization curves verify that the sample has ferromagnetic behavior at the temperature of 400 K. Magnetic measurements revealed that product has uniaxial anisotropy instead of expected cubic anisotropy according to the Stoner-Wohlfarth model.
Kurzfassung
Polyanilin (PANI-EB)/ZFe2O4-Nanocomposite (Z ist ein divalentes Ion; Z2+ = Fe2+, Co2+, Ni2+, Mn2+, und Zn2+) wurden erfolgreich mittels 1-Butyl-3-methylimidazoliumbromid ([BMIM]Br) und Cetyltrimethylammoniumbromid (CTAB) in einer in situ-Polymerisation synthetisiert. Die strukturellen, morphologischen, spektroskopischen und magnetischen Eigenschaften wurden mit der Transmissionselektronenmikroskopie (TEM), der Pulverröntgendiffraktomrie (XRD), der Fourier-Transformations-Infrarotspektroskopie (FT-IR) und der Vibrating Sample Magnetometry (VSM) untersucht. Die Anwesenheit von Polyanilin, [BMIM]Br und CTAB auf der Oberfläche der ZFe2O4-Nanopartikel wurde mit der FT-IR bestätigt. Die Reinheit der Produkte wurde mit der XRD überprüft. Die Ergebnisse der thermogravimetrischen Analyse ergaben, dass die Addition von ZFe2O4-Nanopartikeln zu PANI die thermische Stabilität der Nanopartikel verbesserte. Die Magnetisierungskurven bekräftigten, dass die Proben ein ferromagnetisches Verhalten bei einer Temperatur von 400 K besitzen. Die magnetischen Messungen zeigten, dass das Produkt eine uniaxiale Anisotropie hat anstatt der nach dem Stoner-Wohlfarth-Modell erwarteten kubischen Anisotropie.
References
1. Lagashetty, A. and VenkataramanA.: Polymer nanocomposites, Resonance10 (2005)) 49–60. 10.1007/BF02867106Search in Google Scholar
2. Ventra, M. D., Evoy, S. and HeflinJ. R.: Introduction to Nanoscale Science and Technology, Kluwer Academic Publishers (2004). 10.1007/b119185Search in Google Scholar
3. Aoshima, S., Costa, F. R.Fetters, L., Heinrich, J., Kanaoka, G., Radulescu, S., Richter, A., Saphiannikova, D. and Wagenknecht, M.: Wax Crystal Control Nanocomposites Stimuli-Responsive Polymers. “Advances in Polymer Science”, Springer-VerlagBerlin Heidelberg210, (2008). http://link.springer.com/book/10.1007%2F978-3-540-75500-5.Search in Google Scholar
4. Jiang, J., Li, L. and Zhu, M.: Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization, Reactive & Functional Polymers68 (2008)) 57–62. 10.1016/j.reactfunctpolym.2007.10.010Search in Google Scholar
5. Ilikti, H., Benabdallah, T., Boukreris, S., Aouad, M. R. and El Ashr, E. S. H.: Electrocatalytic Hydrogenation and Hydrogenolysis of Aromatic Halides by Raney Nickel in the Presence of Different Surfactants, Tenside Surf. Det.45 (2008)) 1–4. 10.3139/113.100369Search in Google Scholar
6. Mornet, S., Vasseur, S., Grasset, F., Veverka, P., Goglio, G., Demourgeus, A., Portier, J., Pollert, E. and Duguet, E.: Magnetic nanoparticle design for medical applications, Progress in Solid State Chem34(2–4) (2006) 237. 10.1016/j.progsolidstchem.2005.11.010Search in Google Scholar
7. Vatta, L. L., Sanderson, R. D. and Koch, K. R.: Magnetic nanoparticles: Properties and otential applications; Pure Appl. Chem78 (2006)) 1793. 10.1351/pac200678091793Search in Google Scholar
8. Li, L., Jiang, J. and Xu, F.: Synthesis and ferrimagnetic properties of novel Sm-substituted LiNi ferrite-polyaniline nanocomposite; Materials Letters61 (2007)) 1091–1096. 10.1016/j.matlet.2006.06.061Search in Google Scholar
9. Benabdellah, A., Ilikti, H., Belarbi, H., Fettouhi, B., Ait Amer, A. and Hatti, M.: Effects of The Synthesis Temperature on Electrical Properties of Polyaniline and their Electrochemical Characteristics onto Silver Cavity Microelectrode Ag/C-EM, Int. J. Electrochem. Sci.6 (2011)) 1747–1759.Search in Google Scholar
10. Li, L., Liu, H., Wang, Y., Jiang, J. and Xu, F.: Preparation and magnetic properties of Zn-Cu-Cr-La ferrite and its nanocomposites with polyaniline, Journal of Colloid and Interface Science321 (2008)) 265–271. 10.1016/j.jcis.2008.02.013Search in Google Scholar
11. MacDiarmid, A. G. and Epstein, A. J.: Secondary doping in polyaniline, Physica B354 (2004)) 224–227. 10.1016/0379-6779(94)02374-8Search in Google Scholar
12. Aphesteguy, J. C. and Jacobo, S. E.: Composite of polyaniline containing iron oxides, Physica B354 (2004)) 224–227. 10.1016/j.physb.2004.09.053Search in Google Scholar
13. Moghaddam, A. B. and Nazari, T.: Preparation of Polyaniline/Nanometer-scale Alumina Composite by the Potential Cycling Method, Int. J. Electrochem. Sci.3 (2008)) 768–776.Search in Google Scholar
14. Benabdellah, A., Belarbi, H., IliktiH.FettouhiB. and HattiM.: Electrical Properties of PANI/Chalcogenide Junctions Doped with Ionic Liquids Anions, Int. J. Tenside Surf Det.49 (2012)) 241–246. 10.3139/113.110188Search in Google Scholar
15. Jacobo, S. E., Aphesteguy, J. C., Anton, R. L., Schegoleva, N. N. and Kurlyandskaya, G. V.: Influence of the preparation procedure on the properties of polyaniline based magnetic composites, European Polymer Journal43 (2007)) 1333–1346. 10.1016/j.eurpolymj.2007.01.024Search in Google Scholar
16. Ma, Z., Yu, J. H. and Dai, S.: Preparation of Inorganic Materials Using Ionic Liquids, Adv. Mater22 (2010)) 261. 10.1002/adma.200900603Search in Google Scholar
17. Fetouhi, B., Benabdellah, A., Belarbi, H., Ilikti, H. and Benabdallah, T.: Junction Characteristics System Based on Composite Organic Semiconductors: polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid, Int. J. Tenside Surf Det.51 (2014)) 541–546. 10.3139/113.110341Search in Google Scholar
18. Kavas, H., Günay, M., Baykal, A., Toprak, M. S., Sozeri, H. and Aktas, B.: Negative Permittivity of Polyaniline-Fe3O4 Nanocomposite, J. Inorg. Organomet. Polym.23 (2013)) 306. 10.1007/s10904-012-9776-7Search in Google Scholar
19. Pringle, J. M., Ngamna, O., Lynam, C., Wallace, G.G., Forsyth, M. and MacFarlane, D. R.: Conducting Polymers with Fibrillar Morphology Synthesized in a Biphasic Ionic Liquid/Water System, Macromolecules (2007) 2702. 10.1021/ma062483iSearch in Google Scholar
20. Kumar, A., Murugesan, S., Pushparaj, V., Xie, J., Soldano, C., John, G., Nalamasu, O., Ajayan, P. M. and Linhardt, R.: Conducting Organic-Metallic Composite Submicrometer Rods Based on Ionic Liquids, J. Small3 (2007)) 429. 10.1002/smll.200600442Search in Google Scholar
21. Baykal, A., Günay, M., Toprak, M. S. and Sozeri, H.: Effect of ionic liquids on the electrical and magnetic performance of polyaniline-nickel ferrite nanocomposite, Mater. Res. Bull.48 (2013)) 378. 10.1016/j.materresbull.2012.10.039Search in Google Scholar
22. Leng, C., Wei, J., Liu, Z. and Shi, J.: Influence of imidazolium-based ionic liquids on the performance of polyaniline-CoFe2O4 nanocomposites, Alloy. Compd509 (2011)) 3052. 10.1016/j.jallcom.2010.11.197Search in Google Scholar
23. Wan, M. and Fan, J.: Synthesis and ferromagnetic properties of composites of a water-soluble polyaniline copolymer containing iron oxide, Polym. Sci. part A: Polym. Chem.36 (1998)) 2749. 10.1002/(SICI)1099-0518(19981115)36:15%3C2749::AID-POLA11%3E3.0.CO;2-OSearch in Google Scholar
24. Qu, Y., Yang, H., Yang, N., Fan, Y., Zhu, H. and Zou, G.: The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles, Materials Letters60 (2006)) 3548–3552. 10.1016/j.matlet.2006.03.055Search in Google Scholar
25. Gonzalez, M. P., Beesley, A. M., Yoshida, M. M., Cobas, L. F. and Aquino, J. A. M.: Comparative study of the microstructural and magnetic properties of spinel ferrites obtained by co-precipitation, Journal of Alloys and Compounds369 (2004)) 190–194. 10.1016/j.jallcom.2003.09.101Search in Google Scholar
26. Jiang, J., Li, L. and Xu, F.: In situ synthesis and characterization of LiNi0.5La0.08Fe1.92O4-polyaniline core-shell nanocomposites, Journal of Physics and Chemistry of Solids68 (2007)) 1656–1662. 10.1016/j.jpcs.2007.04.007Search in Google Scholar
27. Guo, H., Zhu, H., Lin, H. and Zhang, J.: Polyaniline/Fe3O4 nanocomposites synthesized under the direction of cationic surfactant, Materials Letters62 (2008)) 2196–2199. 10.1016/j.matlet.2007.11.047Search in Google Scholar
28. Wejrzanowski, T., Pielaszek, R., Opalinska, A., Matysiak, H., Łojkowski, W. and Kurzydłowski, K. J.: Quantitative methods for nanopowders characterization, Appl. Surf. Sci.253 (2006)) 204. 10.1016/j.apsusc.2006.05.089Search in Google Scholar
29. Durmus, Z., Sozeri, H., Toprak, M. S. and Baykal, A.: The effect of condensation on the morphology and magnetic properties of modified barium hexaferrite (BaFe12O19), Nano-Micro Letters3 (2011)) 108–114. nml.v3i2.p108-114.Search in Google Scholar
30. Xue, W., Fang, K., Qiu, H., Li, J. and Mao, W.: Electrical and magnetic properties of the Fe3O4-polyaniline nanocomposite pellets containing DBSA-doped polyaniline and HCl-doped polyaniline with Fe3O4 nanoparticles, Synthetic Metals156 (2006)) 506–509. j.synthmet.2005.06.021.Search in Google Scholar
31. Hu, C., Gao, Z. and Yang, X.: One-pot low temperature synthesis of MFe2O4 (M=Co, Ni, Zn) superparamagnetic nanocrystals, Journal of Magnetism and Magnetic Materials320 (2008)) L70–L73. 10.1016/j.jmmm.2007.12.006Search in Google Scholar
32. Deng, J., Ding, X., Zhang, W., Peng, Y., Wang, J., Long, X., Li, P. and Chan, A.: Magnetic and conducting Fe3O4-cross-linked polyaniline nanoparticles with core-shell structure, Polymer43 (2002)) 2179–2184. 10.1016/S0032-3861(02)00046-0Search in Google Scholar
33. Li, G-y., Jiang, Y-r., Huang, K-l., Ding, P. and Chen, J.: Synthesis and characterization of Co2+:LiGa5O8 nanocrystals by sol-gel method, Journal of Alloys and Compounds466 (2008)) 451–456. 10.1016/j.jallcom.2007.07.014Search in Google Scholar
34. Topkaya, R., Akman, O., Kazan, S., Aktas, B. Z., Durmus, A. and Baykal, J.: Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles, Nanopart. Res.14 (2012)) 1156. 10.1007/s11051-012-1156-2Search in Google Scholar
35. Bharathi, K. K., Tackett, R. J., Botez, C. E. and Ramana, C. V.: Coexistence of spin glass behavior and long-range ferrimagnetic ordering in La- and Dy-doped Co ferrite, J. Appl. Phys.109 (2011)) 07A510. 10.1063/1.3562201Search in Google Scholar
36. Sozeri, H., Kurtan, U., Topkaya, R., Baykal, A. and Toprak, M. S.: Polyaniline (PANI)-Co0.5Mn0.5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation, Ceram. Int.39 (2013)) 5137. 10.1016/j.ceramint.2012.12.009Search in Google Scholar
37. Parekh, K. and Upadhyay, R. V.: Static and dynamic magnetic properties of monodispersed Mn[sub 0.5]Zn[sub 0.5]Fe[sub 2]O[sub 4], J. Appl. Phys.107 (2010)). 053907. 10.1063/1.3310807Search in Google Scholar
38. Kodama, R. H., Berkowitz, A. E. and McNiffJr, E. J.: Surface Spin Disorder inNiFe2O4Nanoparticles, S. Foner., Phys. Rev. Lett.77 (1996)) 394. 10.1103/PhysRevLett.77.394Search in Google Scholar PubMed
39. Laska, J. and Widlarz, J.: Spectroscopic and structural characterization of low molecular weight fractions of polyaniline, Polymer46 (2005)) 1485. 10.1016/j.polymer.2004.12.008Search in Google Scholar
40. Meiklejohn, W. H.: Experimental Study of the Coercive Force of Fine Particles, Rev. Modern Phys.25 (1953)) 302. 10.1103/RevModPhys.25.302Search in Google Scholar
41. Chikazumi, S., Taketomi, S., Ukila, M., Mizukami, M., Miyajima, H. and Setogawa, M.: Physics of magnetic fluids, J. Magn. Magn. Mater65 (1987)) 245. 10.1016/0304-8853(87)90043-6Search in Google Scholar
42. Kodama, R. H., Berkowitz, A. E., Mcniff, E., Foner, J. and Foner, S.: Surface Spin Disorder inNiFe2O4Nanoparticles, Phys. Rev. Lett.77 (1996)) 394. 10.1103/PhysRevLett.77.394Search in Google Scholar
43. Xiao, Q., Tan, X., Ji, L. and Xue, J.: Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route, Synthetic Metals157 (2007)) 784–791. 10.1016/j.synthmet.2007.08.010Search in Google Scholar
© 2015, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Hygiene and Washing
- Characterization of Microbial Communities in Household Washing Machines
- Hygiene in Domestic Laundering – Consumer Behavior in Germany
- Timesaving Washing of Textiles Utilizing 38 kHz Ultrasound
- Application
- Oil Extraction from Oil-Contaminated Drill Cuttings Using a Recyclable Single-Phase O/W Microemulsion
- Physical Chemistry
- Effect of Sodium Taurocholate on Aggregation Behavior of Amphiphilic Drug Solution
- Influence Prediction of Alkylamines Upon Electrical Percolation of AOT-based Microemulsions Using Artificial Neural Networks
- Effect of Tween 40 and Tween 60 on the Properties of a Cationic Slow-Set Emulsifier
- Magnetic Properties of Polyaniline/ZFe2O4 Nanocomposites Synthesized in CTAB as Surfactant and Ionic Liquid
- Novel Surfactants
- Ionic Liquid in Thin-Layer Chromatography of Anionic Surfactants: Selective Separation of Sodium Deoxycholate and Identification in Commercial Products
- Micellar Catalysis
- Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Arabinose in Aqueous Media at Room Temperature
- Environmental Chemistry
- Photocatalytic Degradation of Copper(II) Palmitates in Non Aqueous Media Using ZnO as Photocatalyst
Articles in the same Issue
- Contents/Inhalt
- Contents
- Hygiene and Washing
- Characterization of Microbial Communities in Household Washing Machines
- Hygiene in Domestic Laundering – Consumer Behavior in Germany
- Timesaving Washing of Textiles Utilizing 38 kHz Ultrasound
- Application
- Oil Extraction from Oil-Contaminated Drill Cuttings Using a Recyclable Single-Phase O/W Microemulsion
- Physical Chemistry
- Effect of Sodium Taurocholate on Aggregation Behavior of Amphiphilic Drug Solution
- Influence Prediction of Alkylamines Upon Electrical Percolation of AOT-based Microemulsions Using Artificial Neural Networks
- Effect of Tween 40 and Tween 60 on the Properties of a Cationic Slow-Set Emulsifier
- Magnetic Properties of Polyaniline/ZFe2O4 Nanocomposites Synthesized in CTAB as Surfactant and Ionic Liquid
- Novel Surfactants
- Ionic Liquid in Thin-Layer Chromatography of Anionic Surfactants: Selective Separation of Sodium Deoxycholate and Identification in Commercial Products
- Micellar Catalysis
- Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Arabinose in Aqueous Media at Room Temperature
- Environmental Chemistry
- Photocatalytic Degradation of Copper(II) Palmitates in Non Aqueous Media Using ZnO as Photocatalyst