Study on Cardanolbetaine Surfactants for Ultralow Interfacial Tension in a Low Range of Surfactant Concentration and Wide Range of Temperature Applied in Compound Flooding
-
Huoxin Luan
Abstract
Surfactant flooding aims at lowering the interfacial tensions between the oil and water phases to improve the displacement efficiency during oil recovery. However, ionic surfactants will lose their property in high temperature and high salt reservoirs. This investigation considers the cardanolbetaine surfactants as candidates for enhanced oil recovery (EOR) application in high temperature and high salt reservoirs. According to the experimental results, these surfactants can be effective in lowering interfacial tension (IFT) at dilute concentration, without requiring an alkaline or co-surfactants. In addition, these surfactants exhibit a low IFT at high salinity, high temperature and high concentration of divalent condition, the best surfactant concentration is 0.3 g L−1. The temperature resistance results show that it also has an excellent interfacial property at a wide range temperature from 35.0°C to 85.0°C, and remains its ultralow IFT (≤ 10−3 mN m−1) during 60 days at 85.0°C. The optimal concentration of salt tolerance is 50 g L−1 to 100 g L−1 of NaCl, 100 mg L−1 to 300 mg L−1 of Ca2+ respectively.
Kurzfassung
Das Tensidfluten zielt auf eine Senkung der Grenzflächenspannung zwischen der Öl und der Wasserphase ab, um die Verdrängung bei der Ölgewinnung zu verbessern. Jedoch verlieren ionische Tenside ihre Eigenschaften bei hohen Temperaturen und hohen Salzgehalten. Diese Studie untersucht, ob Cardanolbetaine als Kandidaten für die sekundäre Ölförderung bei hohen Temperaturen und hohem Salzgehalt geeignet sind. Die Ergebnisse zeigen, dass diese Tenside in verdünnten Lösungen die Grenzflächenspannung (ITF) ohne Alkali oder ein Co-Tensid absenken. Des Weiteren besitzen diese Tenside bei hohem Salzgehalt, hohen Temperaturen und hohen Konzentration an divalenten Verbindungen eine geringe IFT. Die beste Tensidkonzentration ist 0,3 g L–1. Die ausgezeichnete Grenzflächeneigenschaft liegt in einem weiten Temperaturbereich von 35.0°C bis 85.0°C vor; die ITF bleibt für 60 Tage bei 85°C ultraniedrig (≤ 10−3 mN m−1). Die optimale Salztoleranz beträgt zwischen 50 g L−1 bis 100 g L−1 für NaCl und 100 mg L−1 bis 300 mg L−1 für Ca2+.
References
1. De Gennes, P. G.: Interactions between polymers and surfactants. J. Phys. Chem.94 (1990) 8407–8413. 10.1021/j100385a010Suche in Google Scholar
2. Bu, H. T., Kjøniksen, A. L., Knudsen, K. D. and Nyström, B.: Effects of surfactant and temperature on rheological and structural properties of semidilute aqueous solutions of unmodified and hydrophobically modified alginate. Langmuir21 (2005) 10923–10930. 10.1021/la051187gSuche in Google Scholar PubMed
3. Salager, J. L., Anton, R. E., Sabatini, D. A., Harwell, J. H., Acosta, E. and Tolosa, L. I.: Enhancing solubilization in microemulsions-state of the art and current trends. Journal of Surfactants and Detergents8 (2005) 3–21. 10.1007/s11743-005-0328-4Suche in Google Scholar
4. LifengChen and XingkaiZhang: Research the Oil Displacing Performance of Dodecyl Polyoxyethylene Ether Sulfonates at Difficult Conditions. Tenside Surf. Det.50 (3) (2013) 169–174. 10.3139/113.110244Suche in Google Scholar
5. Zhao, Z. K., Bi, C. G., Qiao, W. H., Li, Z. S. and Cheng, L. B.: Dynamic interfacial tension behavior of the novel surfactant solutions and Daqing crude oil. Colloids Surf. A294 (2007) 191–202. 10.1016/j.colsurfa.2006.08.011Suche in Google Scholar
6. Li, N., Zhang, G. C., GeJ. J., Jin, L. C., Zhang, J. Q., Ding, B. D. and Pei, H. H.: Adsorption behavior of betaine-type surfactant on quartz sand. Energy and Fuels10 (2011) 4430–4437. 10.1021/ef200616bSuche in Google Scholar
7. Hoff, E., Nystrom, B. and Lindman, B.: Polymer-surfactant interactions in dilute mixtures of a nonionic cellulose derivative and an anionic surfactant. Langmuir17 (2001) 28–34. 10.1021/la001175pSuche in Google Scholar
8. Zheng, Z. G., Hou, J. R., Zhao, F. L., Li, Z. L. and Lv, Z. B.: Research propgress of the betaine used in chemical combination flooding, Chemical Research and Application23 (2011) 31–33. 10.3969/j.issn.1004-1656.2011.01.005Suche in Google Scholar
9. Guo, D. H., Xin, H. C. and Cui, X. D.: Study on properties of ROS surfactant applied in high temperature and salinity reservoir5 (2004) 9–11. 10.3969/j.issn.1003-9384.2008.05.003Suche in Google Scholar
10. Chen, T., ZhangG.C., GeJ.J. and Yang, H.: The research on weak alkali ASP compound flooding system for shengli heavy oil, Advances in Petroleum Exploration and Development5 (2013) 106–111. 10.3968/j.aped.1925543820130501.1123Suche in Google Scholar
11. Qiao, W. H., CuiY. C., Zhu, Y. Y. and Cai. H. Y.: Dynamic interfacial tension behaviors between Guerbet betaine surfactants solution and Daqing crude oil. Fuel102 (2012) 746–750. 10.1016/j.fuel.2012.05.046Suche in Google Scholar
12. Guan, J. Q. and Tung, C. H.: Aggregation of novel betaine surfactants N-(3-Alkoxy-2-hydroxypropyl)-N,N-dimethylglycines in aqueous solution: micellization and microenvironment characteristics. Langmuir4 (1999) 1011–1016. 10.1021/la971353nSuche in Google Scholar
13. Aoudia, M., Al-Shibli, M. N., Al-Kasimi, L. H., Al-Maamari, R. and Al-bemani, A.: Novel surfactants for ultralow interfacial tension in a wide range of surfactant concentration and temperature. Journal of Surfactants and Detergents3 (2006) 287–293. 10.1007/s11743-006-5009-9Suche in Google Scholar
14. Wu, W. X., Yan. W. and Liu, C. D.: Interfacial activity of sulfobetaine BS11 as surfactant for EOR. Oil Field Chemistry of China1 (2007) 57–59. 10.3969/j.issn.1000-4092.2007.01.014Suche in Google Scholar
15. Qu, G. M., Cheng, J. C., Wei, J. J., Yu, T., Ding, W. and Luan, H. X.: Synthesis, characterization and surface properties of series sulfobetaine surfactants. Journal of Surfactants and Detergents14 (2011) 31–35. 10.1007/s11743-010-1212-9Suche in Google Scholar
16. Iglauer, S., Wu, Y. F., Shuler, P., Tang, Y. C. and GoddardIII, W. A.: New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. Journal of Petroleum Science and Enginnering71 (2010) 23–29. 10.1016/j.petrol.2009.12.009Suche in Google Scholar
17. Cui, Z. G., Du, X. R., Pei, X. M., Jiang, J. Z. and Wang, F.: Synthesis of didodecylmethylcarboxyl betaine and its application in surfactant-polymer flooding. Journal of Surfactants and Detergents15 (2012) 685–694. 10.1007/s11743-012-1396-2Suche in Google Scholar
18. ShuangjianDong, YunlingLi, JinpingNiu and XiaochenLiu: Surface and Interfacial Performance of Unsaturated Octadecyl Carboxybetaine. Tenside Surf. Det.50 (4) (2013) 240–244. 10.3139/113.110254Suche in Google Scholar
19. Zendehboudi, S., Ahmadi, M. A., Rajabzadeh, A. R., Mahinpey, N. and Chatzis, I.: Experimental study on adsorption of a new surfactant onto carbonate reservoir samples-application to EOR. The Canadian Journal of Chemical Engineering91 (2013) 1439–1449. 10.1002/cjce.21806Suche in Google Scholar
20. Zendehboudi, S., Chatzis, I., Mohsenipour, A. A. and Elkamel, A.: Dimensional analysis and scale-up of immiscible two-phase flow displacement in fractured porous media under controlled gravity drainage. Energy Fuels25 (2011) 1731–1750. 10.1021/ef101506nSuche in Google Scholar
21. DingW., Li, S. J., Yu, T., Qu, G. M., Yuan, D. D., Liu, K., Chen, Y. P. and Zhang, Z. W.: Synthesis and properties of novel sulfobetaine, Chemical Industry and Engineering1 (2012) 29–31. 10.3969/j.issn.1004-9533.2012.01.006Suche in Google Scholar
22. Rosen, M. J. (3Ed): Surfactant and interfacial phenomena, Wiley Publishing, New Jersey (2004) p. 66. 10.1002/0471670561.fmatterSuche in Google Scholar
23. Ahmadi, M. A., Zendehboudi, S., Shafiei, A. and James, L.: Nonionic surfactant for enhanced Oil recovery from carbonates: Adsorption kinetics and equilibrium, Industrial and Engineering Chemistry Research29 (2012) 9894–9905. 10.1021/ie300269cSuche in Google Scholar
24. Qi, L. Y., Fang, Y., Wang, Z. Y., Ma, N., Jiang, L. Y. and Wang, Y. Y.: Synthesis and physicochemical investigation of long alkylchainbetaine zwitterionic surfactant. Journal of Surfactants and Detergents11 (2008) 55–59. 10.1007/s11743-007-1054-2Suche in Google Scholar
© 2015, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergents
- Comparison Test of Oily Soil Removal of Japanese Laundry Detergents Using a Regression Formula to Derive Soil Quantity from K/S Value of Colored Oil
- Influence of Special Clays as Builder in Ecological Detergents
- Synthesis
- Syntheses of Tartaric Acid-Based Hybrid Gemini Surfactants Containing Fluorocarbon and Hydrocarbon Chains
- Study on Cardanolbetaine Surfactants for Ultralow Interfacial Tension in a Low Range of Surfactant Concentration and Wide Range of Temperature Applied in Compound Flooding
- Mizellar Catalysis
- Room Temperature Micellar Catalysis on Permanganate Oxidation of Butanol to Butanal in Aqueous Medium at Atmospheric Pressure
- Environmental Chemistry
- Tween-20 Modified Acacia nelotica and Oryza sativa Biomass for Enhanced Biosorption of Cr(VI) in Aqueous Environment
- Physical Chemistry
- Physico-Chemical Studies of Glycine, L-Alanine, L-Phenylalanine and Glycylglycine in Aqueous Triton X-100 at Different Temperatures
- Effect of Polyacrylic Acid and Polyacrylamide on Clouding Behavior of Triton-X-100 in Aqueous Medium
- Model Based Approach to Study of Release Kinetics of the Drug Chlorhexidine from Hydrogels
- Application
- Micellization Behaviour of m-E2-m Biodegradable Gemini Surfactants in Presence of Sodium Alkanoates (Sodium Propionate, Sodium Hexanoate, Sodium Decanoate)
- Destabilization of Gas Condensate Oil-Water Emulsion by Dissolved Air Flotation Using New Non Ionic Surfactants
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergents
- Comparison Test of Oily Soil Removal of Japanese Laundry Detergents Using a Regression Formula to Derive Soil Quantity from K/S Value of Colored Oil
- Influence of Special Clays as Builder in Ecological Detergents
- Synthesis
- Syntheses of Tartaric Acid-Based Hybrid Gemini Surfactants Containing Fluorocarbon and Hydrocarbon Chains
- Study on Cardanolbetaine Surfactants for Ultralow Interfacial Tension in a Low Range of Surfactant Concentration and Wide Range of Temperature Applied in Compound Flooding
- Mizellar Catalysis
- Room Temperature Micellar Catalysis on Permanganate Oxidation of Butanol to Butanal in Aqueous Medium at Atmospheric Pressure
- Environmental Chemistry
- Tween-20 Modified Acacia nelotica and Oryza sativa Biomass for Enhanced Biosorption of Cr(VI) in Aqueous Environment
- Physical Chemistry
- Physico-Chemical Studies of Glycine, L-Alanine, L-Phenylalanine and Glycylglycine in Aqueous Triton X-100 at Different Temperatures
- Effect of Polyacrylic Acid and Polyacrylamide on Clouding Behavior of Triton-X-100 in Aqueous Medium
- Model Based Approach to Study of Release Kinetics of the Drug Chlorhexidine from Hydrogels
- Application
- Micellization Behaviour of m-E2-m Biodegradable Gemini Surfactants in Presence of Sodium Alkanoates (Sodium Propionate, Sodium Hexanoate, Sodium Decanoate)
- Destabilization of Gas Condensate Oil-Water Emulsion by Dissolved Air Flotation Using New Non Ionic Surfactants