Startseite Study on Cardanolbetaine Surfactants for Ultralow Interfacial Tension in a Low Range of Surfactant Concentration and Wide Range of Temperature Applied in Compound Flooding
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on Cardanolbetaine Surfactants for Ultralow Interfacial Tension in a Low Range of Surfactant Concentration and Wide Range of Temperature Applied in Compound Flooding

  • Huoxin Luan , Yunqiang Wu , Wenxiang Wu , Wei Zhang , Quansheng Chen , Hailing Zhang , Dandan Yuan , Guangmiao Qu und Wei Ding
Veröffentlicht/Copyright: 2. Februar 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Surfactant flooding aims at lowering the interfacial tensions between the oil and water phases to improve the displacement efficiency during oil recovery. However, ionic surfactants will lose their property in high temperature and high salt reservoirs. This investigation considers the cardanolbetaine surfactants as candidates for enhanced oil recovery (EOR) application in high temperature and high salt reservoirs. According to the experimental results, these surfactants can be effective in lowering interfacial tension (IFT) at dilute concentration, without requiring an alkaline or co-surfactants. In addition, these surfactants exhibit a low IFT at high salinity, high temperature and high concentration of divalent condition, the best surfactant concentration is 0.3 g L−1. The temperature resistance results show that it also has an excellent interfacial property at a wide range temperature from 35.0°C to 85.0°C, and remains its ultralow IFT (≤ 10−3 mN m−1) during 60 days at 85.0°C. The optimal concentration of salt tolerance is 50 g L−1 to 100 g L−1 of NaCl, 100 mg L−1 to 300 mg L−1 of Ca2+ respectively.

Kurzfassung

Das Tensidfluten zielt auf eine Senkung der Grenzflächenspannung zwischen der Öl und der Wasserphase ab, um die Verdrängung bei der Ölgewinnung zu verbessern. Jedoch verlieren ionische Tenside ihre Eigenschaften bei hohen Temperaturen und hohen Salzgehalten. Diese Studie untersucht, ob Cardanolbetaine als Kandidaten für die sekundäre Ölförderung bei hohen Temperaturen und hohem Salzgehalt geeignet sind. Die Ergebnisse zeigen, dass diese Tenside in verdünnten Lösungen die Grenzflächenspannung (ITF) ohne Alkali oder ein Co-Tensid absenken. Des Weiteren besitzen diese Tenside bei hohem Salzgehalt, hohen Temperaturen und hohen Konzentration an divalenten Verbindungen eine geringe IFT. Die beste Tensidkonzentration ist 0,3 g L–1. Die ausgezeichnete Grenzflächeneigenschaft liegt in einem weiten Temperaturbereich von 35.0°C bis 85.0°C vor; die ITF bleibt für 60 Tage bei 85°C ultraniedrig (≤ 10−3 mN m−1). Die optimale Salztoleranz beträgt zwischen 50 g L−1 bis 100 g L−1 für NaCl und 100 mg L−1 bis 300 mg L−1 für Ca2+.


* Correspondence address, Dr. Huoxin Luan, Research institute of Enhance Oil Recovery, Experimental Testing Institute, XinJiang Oilfield Company, Kelamayi 834000, XinJiang, China, Tel.: +86-0990-6880265; +8615719963902, E-Mail:

Huo-xin Luan received the doctor's degree in 2013 from North East Petroleum University in Heilongjiang Province of the PR China, Then study at Xin Jiang Oilfield company as a postdoctoral researcher of the PR China.

Yunqiang Wu is the vice president of Experimental Testing Institute, Xin Jiang Oilfield Company.

Wen-xiang Wu graduated in 1984 and at the same year worked at North East Petroleum University in Heilongjiang Province of the PR China as a research chemist, mainly concentrated on the oil and gas development with a focus on Enhancing Oil Recovery since then. He received his Ph.D in 1996 from North East Petroleum University in Heilongjiang Province of the PR China.

Wei Zhang received the master's degree in 2013 from North East Petroleum University in Heilongjiang Province of the PR China, fields of interest are the structure and the properties relationship of novel surfactants. Then worked at Xin Jiang Oilfield Company.

Quansheng Chen worked at research institute of Enhance Oil Recovery, Experimental Testing Institute, Xin Jiang Oilfield Company.

Hailing Zhang received the Bachelor degree in 2010 from North East Petroleum University in Heilongjiang Province of the PR China, fields of interest are the structure and the properties relationship of novel surfactants.

Dan-dan Yuan received the master's degree in 2013 from North East Petroleum University in Heilongjiang Province of the People's Republic of China, then worked at Xin Jiang Oilfield Company, fields of interest are the structure and the properties relationship of novel surfactants.

Guang-miao Qu received the master's degree in 2004 from North East Petroleum University in Heilongjiang Province of the PR China and at the same year joined the School of Chemistry and Chemical Engineering as a research chemist, working with the synthesis and applications of oil chemicals since then. Guang-miao Qu received the doctor's degree in 2012 at China University of Petroleum in Beijing of the PR China.

Wei Ding graduated in 1985 and at the same year worked at Daqing Petroleum Institute in Heilongjiang Province of the PR China as a research chemist, mainly concentrated on the synthesis and applications of surfactants and polymers since then. He received his Ph.D in 2005 from Daqing Petroleum Institute in Heilongjiang Province of the PR China.


References

1. De Gennes, P. G.: Interactions between polymers and surfactants. J. Phys. Chem.94 (1990) 84078413. 10.1021/j100385a010Suche in Google Scholar

2. Bu, H. T., Kjøniksen, A. L., Knudsen, K. D. and Nyström, B.: Effects of surfactant and temperature on rheological and structural properties of semidilute aqueous solutions of unmodified and hydrophobically modified alginate. Langmuir21 (2005) 1092310930. 10.1021/la051187gSuche in Google Scholar PubMed

3. Salager, J. L., Anton, R. E., Sabatini, D. A., Harwell, J. H., Acosta, E. and Tolosa, L. I.: Enhancing solubilization in microemulsions-state of the art and current trends. Journal of Surfactants and Detergents8 (2005) 321. 10.1007/s11743-005-0328-4Suche in Google Scholar

4. LifengChen and XingkaiZhang: Research the Oil Displacing Performance of Dodecyl Polyoxyethylene Ether Sulfonates at Difficult Conditions. Tenside Surf. Det.50 (3) (2013) 169174. 10.3139/113.110244Suche in Google Scholar

5. Zhao, Z. K., Bi, C. G., Qiao, W. H., Li, Z. S. and Cheng, L. B.: Dynamic interfacial tension behavior of the novel surfactant solutions and Daqing crude oil. Colloids Surf. A294 (2007) 191202. 10.1016/j.colsurfa.2006.08.011Suche in Google Scholar

6. Li, N., Zhang, G. C., GeJ. J., Jin, L. C., Zhang, J. Q., Ding, B. D. and Pei, H. H.: Adsorption behavior of betaine-type surfactant on quartz sand. Energy and Fuels10 (2011) 44304437. 10.1021/ef200616bSuche in Google Scholar

7. Hoff, E., Nystrom, B. and Lindman, B.: Polymer-surfactant interactions in dilute mixtures of a nonionic cellulose derivative and an anionic surfactant. Langmuir17 (2001) 2834. 10.1021/la001175pSuche in Google Scholar

8. Zheng, Z. G., Hou, J. R., Zhao, F. L., Li, Z. L. and Lv, Z. B.: Research propgress of the betaine used in chemical combination flooding, Chemical Research and Application23 (2011) 3133. 10.3969/j.issn.1004-1656.2011.01.005Suche in Google Scholar

9. Guo, D. H., Xin, H. C. and Cui, X. D.: Study on properties of ROS surfactant applied in high temperature and salinity reservoir5 (2004) 911. 10.3969/j.issn.1003-9384.2008.05.003Suche in Google Scholar

10. Chen, T., ZhangG.C., GeJ.J. and Yang, H.: The research on weak alkali ASP compound flooding system for shengli heavy oil, Advances in Petroleum Exploration and Development5 (2013) 106111. 10.3968/j.aped.1925543820130501.1123Suche in Google Scholar

11. Qiao, W. H., CuiY. C., Zhu, Y. Y. and Cai. H. Y.: Dynamic interfacial tension behaviors between Guerbet betaine surfactants solution and Daqing crude oil. Fuel102 (2012) 746750. 10.1016/j.fuel.2012.05.046Suche in Google Scholar

12. Guan, J. Q. and Tung, C. H.: Aggregation of novel betaine surfactants N-(3-Alkoxy-2-hydroxypropyl)-N,N-dimethylglycines in aqueous solution: micellization and microenvironment characteristics. Langmuir4 (1999) 10111016. 10.1021/la971353nSuche in Google Scholar

13. Aoudia, M., Al-Shibli, M. N., Al-Kasimi, L. H., Al-Maamari, R. and Al-bemani, A.: Novel surfactants for ultralow interfacial tension in a wide range of surfactant concentration and temperature. Journal of Surfactants and Detergents3 (2006) 287293. 10.1007/s11743-006-5009-9Suche in Google Scholar

14. Wu, W. X., Yan. W. and Liu, C. D.: Interfacial activity of sulfobetaine BS11 as surfactant for EOR. Oil Field Chemistry of China1 (2007) 5759. 10.3969/j.issn.1000-4092.2007.01.014Suche in Google Scholar

15. Qu, G. M., Cheng, J. C., Wei, J. J., Yu, T., Ding, W. and Luan, H. X.: Synthesis, characterization and surface properties of series sulfobetaine surfactants. Journal of Surfactants and Detergents14 (2011) 3135. 10.1007/s11743-010-1212-9Suche in Google Scholar

16. Iglauer, S., Wu, Y. F., Shuler, P., Tang, Y. C. and GoddardIII, W. A.: New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. Journal of Petroleum Science and Enginnering71 (2010) 2329. 10.1016/j.petrol.2009.12.009Suche in Google Scholar

17. Cui, Z. G., Du, X. R., Pei, X. M., Jiang, J. Z. and Wang, F.: Synthesis of didodecylmethylcarboxyl betaine and its application in surfactant-polymer flooding. Journal of Surfactants and Detergents15 (2012) 685694. 10.1007/s11743-012-1396-2Suche in Google Scholar

18. ShuangjianDong, YunlingLi, JinpingNiu and XiaochenLiu: Surface and Interfacial Performance of Unsaturated Octadecyl Carboxybetaine. Tenside Surf. Det.50 (4) (2013) 240244. 10.3139/113.110254Suche in Google Scholar

19. Zendehboudi, S., Ahmadi, M. A., Rajabzadeh, A. R., Mahinpey, N. and Chatzis, I.: Experimental study on adsorption of a new surfactant onto carbonate reservoir samples-application to EOR. The Canadian Journal of Chemical Engineering91 (2013) 14391449. 10.1002/cjce.21806Suche in Google Scholar

20. Zendehboudi, S., Chatzis, I., Mohsenipour, A. A. and Elkamel, A.: Dimensional analysis and scale-up of immiscible two-phase flow displacement in fractured porous media under controlled gravity drainage. Energy Fuels25 (2011) 17311750. 10.1021/ef101506nSuche in Google Scholar

21. DingW., Li, S. J., Yu, T., Qu, G. M., Yuan, D. D., Liu, K., Chen, Y. P. and Zhang, Z. W.: Synthesis and properties of novel sulfobetaine, Chemical Industry and Engineering1 (2012) 2931. 10.3969/j.issn.1004-9533.2012.01.006Suche in Google Scholar

22. Rosen, M. J. (3Ed): Surfactant and interfacial phenomena, Wiley Publishing, New Jersey (2004) p. 66. 10.1002/0471670561.fmatterSuche in Google Scholar

23. Ahmadi, M. A., Zendehboudi, S., Shafiei, A. and James, L.: Nonionic surfactant for enhanced Oil recovery from carbonates: Adsorption kinetics and equilibrium, Industrial and Engineering Chemistry Research29 (2012) 98949905. 10.1021/ie300269cSuche in Google Scholar

24. Qi, L. Y., Fang, Y., Wang, Z. Y., Ma, N., Jiang, L. Y. and Wang, Y. Y.: Synthesis and physicochemical investigation of long alkylchainbetaine zwitterionic surfactant. Journal of Surfactants and Detergents11 (2008) 5559. 10.1007/s11743-007-1054-2Suche in Google Scholar

Received: 2014-03-18
Accepted: 2014-05-28
Published Online: 2015-02-02
Published in Print: 2015-01-20

© 2015, Carl Hanser Publisher, Munich

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110345/html
Button zum nach oben scrollen