Destabilization of Gas Condensate Oil-Water Emulsion by Dissolved Air Flotation Using New Non Ionic Surfactants
-
Ahmed M. Al-sabagh
Abstract
This paper focuses on the synthesis of new demulsifiers based on oleic acid monoamide to treat gas condensate-in-water emulsions. The chemical structure of the prepared ethoxylated demulsifier was confirmed by FT-IR and 1H NMR spectroscopy. The treatment of gas condensate-in-water emulsions was investigated by means of dissolved-air flotation jar-tests. The effect of several parameters on the flotation efficiency for separation of the emulsified oil was investigated such as: effect of pH value, demulsifiers concentration, feed rate (L/min) and saturator working pressure (psi). Also, the surface and interfacial tensions, and the thermodynamic properties of the prepared surfactants have been studied. The results show that the optimum oil removal (99.9%) was obtained for OT3 at the concentration of 150 ppm, pH = 2, feed rate = 0.1 L/min and the saturation pressure 10 psi.
Kurzfassung
Dieser Beitrag beschäftigt sich mit der Synthese neuer Emulsionsspalter auf Basis von Ölsäuremonoamid, mit denen Gaskondensat-in-Wasser-Emulsionen behandelt werden. Die chemische Struktur der hergestellten ethoxilierten Emulsionsspalter wurde mittels FT-IR- und 1H NMR-Spektroskopie bestätigt. Die Behandlung der Gaskondensat-in-Wasser-Emulsionen wurde mit Hilfe von Entspannungsflotations-Jartests durchgeführt. Der Einfluss verschiedener Parameter auf die Flotationseffizienz bei der Trennung von emulgiertem Öl wurde bestimmt. Die Parameter waren: pH-Wert, Konzentration des Emulsionsspalters, die Fördermenge (L/min) und der Betriebsdruck des Sättigers (psi). Ebenfalls wurden die Oberflächen- und Grenzflächenspannung und die thermodynamischen Parameter der hergestellten Tenside untersucht. Die Ergebnisse zeigen, dass eine optimale Ölentfernung von 99,9% mit OT3 bei einer Konzentration von 150 ppm, bei einem pH von 2, einer Fördermenge von 0,1 L/min und einem Sättigungsdruck von 10 psi erhalten wurde.
References
1. Al-Zoubi, H., Al-Thyabat, S. and Al-Khatib, L.: A hybrid flotation-membrane process for wastewater treatment: an overview; Desalin. Water Treat.7 (2009) 60. 10.5004/dwt.2009.726Search in Google Scholar
2. Da Rosa, J. J. and Rubio, J.: The FF (flocculation-flotation) process; Miner. Eng.18 (2005) 701. 10.1016/j.mineng.2004.10.010Search in Google Scholar
3. Al-Shamrani, A. A., James, A. A. and Xiao, H.: Destabilisation of oil-water emulsions and separation by dissolved air flotation; Water Res. 36 (2002) 1503. 10.1016/S0043-1354(01)00347-5Search in Google Scholar
4. Gregory, R. and Zabel, T.: in: PontiusFW, Water quality and treatment, McGraw-Hill, New York, 1990, pp. 367–453; ISBN 0-07-001659-3.Search in Google Scholar
5. Offringa, G.: Dissolved air flotation in Southern Africa; Water Sci. Technol.31 (1995) 159. 10.1016/0273-1223(95)00214-8Search in Google Scholar
6. Mohamed, T. and Nadji, M.: Optimization of oil removal from oily wastewater by electrocoagulation using response surface method; J. Hazard. Mater.158 (2008) 107–115. 10.1016/j.jhazmat.2008.01.051Search in Google Scholar
7. Takahashi, T., Miyahara, T. and Nishizaki, Y.: Separation of oily water by bubble column; J. Chem. Eng. Jpn.12 (1979) 394. 10.1252/jcej.12.394Search in Google Scholar
8. Richard, T. B., Richard, T. and Cheremisinoff, P. N.: Oil/Water Separation Technology: The Options Available, Part 2, Water and Sewage Works, 1978; ERIC Number: EJ187482.Search in Google Scholar
9. Edzwald, J. K., Walsh, J. P., Kaminski, G. S. and Dunn, H. J.: Flocculation and air requirements for dissolved air flotation; J. Am. Water Works Assoc.84 (1992) 92. 10.2307/41293665Search in Google Scholar
10. Bunker, D. Q., Edzwald, J. K., Dahlquist, J. and Gillberg, L.: Pretreatment considerations for dissolved air flotation: Water type, coagulants and flocculation; Water Sci. Technol.31 (1995) 63. 10.1016/0273-1223(95)00205-2Search in Google Scholar
11. Fukushi, K. I., Matsui, Y. and Tambo, N.: Dissolved air flotation: experiments and kinetic analysis; J. Water Supply Res. Technol.47 (1998) 76. 10.1046/j.1365-2087.1998.00085.xSearch in Google Scholar
12. Klute, R., Langer, S. and Pfeifer, R.: Optimization of coagulation processes prior to DAF; Water Sci. Technol.31 (1995) 59. 10.1016/0273-1223(95)00206-3Search in Google Scholar
13. Vlaski, A., Van Breemen, A. N. and Alaerts, G. J.: Optimisation of coagulation conditions for the removal of cyanobacteria by dissolved air flotation or sedimentation; J. Water Supply Res. Technol.45 (1996) 253. 10.1016/j.seppur.2006.03.017Search in Google Scholar
14. Al-ShamranimA.A., Jamesm, A. and Xiaom, H.: Separation of oil from water by dissolved air flotation; Colloids Surf. A: Physicochem. Eng. Aspects209 (2002) 15. 10.1016/S0927-7757(02)00208-XSearch in Google Scholar
15. Fang, C. S., Chang, B. K. L., Lai, P. M. C. and Klaila, W. J.: Microwave demulsification; Chem. Eng. Commun.73 (1988) 227. 10.1080/00986448808940444Search in Google Scholar
16. Fang, C. S. and Lai, P. M. C.: Microwave heating and separation of water-in-oil emulsions; JMPEE. 30 (1995) 46; ISSN 0832-7823.Search in Google Scholar
17. Hirato, T., Koyama, K., Tanaka, T., Awakura, Y. and Majima, H.: Demulsification of water-in-oil emulsion by an electrostatic coalescence method; Mater. Trans.32 (1991) 257; ISSN: 09161821.Search in Google Scholar
18. Wang, S. S., Lee, C. J. and Chan, C. C.: Demulsification of Water-in-oil emulsions by use of a high voltage ac field; Sep. Sci. Technol.29 (1994) 159. 10.1080/01496399408002475Search in Google Scholar
19. Krawczyk, M. A., Wasan, D. T. and Shetty, C.: Chemical demulsification of petroleum emulsions using oil-soluble demulsifiers; Ind. Eng. Chem. Res.30 (1991) 367. 10.1021/ie00050a014Search in Google Scholar
20. Mason, S. L., May, K. and Hartland, S.: Drop size and concentration profile determination in petroleum emulsion separation; Colloids Surf. A: Physicochem. Eng. Aspects96 (1995) 85. 10.1016/0927-7757(94)03030-4Search in Google Scholar
21. Demetriades, K., Coupland, J. N. and McClements, D. J.: Physical Properties of whey protein stabilized emulsions as related to pH and NaCl; J. Food Sci.62 (1997) 342. 10.1111/j.1365-2621.1997.tb03997.xSearch in Google Scholar
22. Ferm, R. J. and Riebsomer, J. L.: The Chemistry of the 2-imidazolines and imidazolidines; Chem. Rev.54 (1954) 593. 10.1021/cr60170a002Search in Google Scholar
23. Yinqiu, Wu. and PhilipR.H.: Thermal reactions of fatty acids with diethylene triamine; JAOCS. 74 (1997) 61–64. 10.1007/s11746-997-0120-2Search in Google Scholar
24. Bistline, R. G., Hampson, J. W. and Linfield, W. M.: Synthesis and properties of fatty imidazolines and their N-(2-aminoethyl) derivatives; JAOCS. 60 (1983) 823. 10.1007/bf02787436Search in Google Scholar
25. Linfield, W. M.: Fatty oxazolines and imidazolines; J. Amer. Oil Chem. Soc.61 (1984) 437. 10.1007/bf02678810Search in Google Scholar
26. Farag, A. A. and Noor El-Din, M. R.: The adsorption and corrosion inhibition of some nonionic surfactants on API X65 steel surface in hydrochloric acid; Corrosion Sci. 64 (2012) 174. 10.1016/j.corsci.2012.07.016Search in Google Scholar
27. Wu, Y. and Herrington, P. R.: Thermal reactions of fatty acids with diethylene triamine; J. Am. Oil Chem. Soc.74 (1997) 61. 10.1007/s11746-997-0120-2Search in Google Scholar
28. Ford, R. E. and Furmidge, C. G. L.: Studies at phase interfaces: II. The stabilization of water-in-oil emulsions using oil-soluble emulsifiers; J. Colloid Interface Sci.22 (1966) 331. 10.1016/0021-9797(66)90013-0Search in Google Scholar
29. Badawi, A. M., Fahmy, A. A., Mohamed, K. A., Noor El-Din, M. R. and Riad, M. G.: The Effect of different ethoxylations for sorbitan monolaurate on enhancing simultaneous saccharification and fermentation (SSF) of wheat straw to ethanol; Appl. Biochem. Biotechnol.166 (2012) 22. 10.1007/s12010-011-9400-2Search in Google Scholar
30. Gehr, R. and Henry, J. G.: Measuring and predicting flotation performance; J.Water Pollut. Control Fed.50 (1978) 203. 10.2307/25039535Search in Google Scholar
31. Martinelli, F. N. and Lynch, B. W. J.: Factors Affecting the efficiency of dispersants, in, Warren Spring Laboratory, Stevenage, UK, 1980; ISBN: 0-85624-248-9.Search in Google Scholar
32. Noor El-Din, M. R., El-Hamouly, S. H., Mohamed, H. M., Mishrif, M. R. and Ragab, A. M.: Formation and Stability of water-in-diesel fuel nanoemulsions prepared by high-energy Method; J. Dispersion Sci. Technol.34 (2013) 575. 10.1080/01932691.2012.681606Search in Google Scholar
33. Rosen, M. J.: Surfactants and interfacial phenomena, third ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2004; ISBN 0-471-47818-0.Search in Google Scholar
34. Bajpai, D. and Tyagi, V. K.: Microwave synthesis of cationic fatty imidazolines and their characterization; J. Surf. Deterg.11 (2008) 79. 10.1007/s11743-007-1057-zSearch in Google Scholar
35. Kamel, A., Sabet, V., Sadek, H. and Srivasava, S. N.: The role of non-ionic surfactants in emulsion stability, in: A.Weiss (Ed.) Emulsions, Steinkopff, 1978, pp. 33–40. 10.1007/BFb0117151Search in Google Scholar
36. Zouboulis, A. I. and Avranas, A.: Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation; Colloids Surf. A: Physicochem. Eng. Aspects172 (2000) 153. 10.1016/S0927-7757(00)00561-6Search in Google Scholar
37. Zaki, N. N., Abdel-Raouf, M. E.-S. and Abdel-Azim, A.-A. A.: Propylene Oxide-Ethylene Oxide Block Copolymers as Demulsifiers for Water-in-Oil Emulsions, Effects of Temperature, Salinity, pH-Value, and Solvents on the Demulsification Efficiency. Monatshefte für Chemie127 (1996b) 1239–1245. 10.1007/BF00807790Search in Google Scholar
38. Stachurski, J. and Michalek, M.: The Effect of the ζ Potential on the Stability of a Non-Polar Oil-in-Water Emulsion; J. Colloid Interface Sci.184 (1996) 433. 10.1006/jcis.1996.0637Search in Google Scholar
39. Chen, C. M., Lu, C. H., Chang, C. H., Yang, Y. M. and Maa, J. R.: Influence of pH on the stability of oil-in-water emulsions stabilized by a splittable surfactant; Colloids Surf. A: Physicochem. Eng. Aspects170 (2000) 173. 10.1016/S0927-7757(00)00480-5.Search in Google Scholar
40. Stephenson, R. J. and Duff, S. J. B.: Coagulation and precipitation of a mechanical pulping effluent- I. Removal of carbon, colour and turbidity. Water Res.30 (4) (1995) 781–792. 10.1016/0043-1354(95)00213-8.Search in Google Scholar
41. Al-Sabagh, A. M., Badawi, A. M. and Noor El-Din, M. R.: Breaking water-in-crude oil emulsions by novel demulsifiers based on maleic anhydride-oleic acid adduct; Pet. Sci. Technol.20 (2002) 887. 10.1081/lft-120003685Search in Google Scholar
42. Al-Sabagh, A. M., Kandile, N. G. and Noor El-Din, M. R.: Functions of Demulsifiers in the petroleum industry; Sep. Sci. Technol.46 (2011) 1144. 10.1080/01496395.2010.550595Search in Google Scholar
43. Al-Sabagh, A. M., Abd-El-Bary, H. M., El-Ghazawy, R. A., Mishrif, M. R. and Hussein, B. M.: Surface active and thermodynamic properties of some surfactants derived from locally linear and heavy alkyl benzene in relation to corrosion inhibition efficiency; Mater. Corros.62 (2011) 1015. 10.1002/maco.201006017Search in Google Scholar
44. Al-Sabagh, A. M., Azzam, E. M. S. and Noor El Din, M. R.: The Surface and thermodynamic properties of ethoxylated sodium monoalkyl sulfosuccinate surfactants; J. Dispersion Sci. Technol.30 (2009) 260. 10.1080/01932690802477355Search in Google Scholar
45. Tang, L., Li, X., Li, L., Mu, G. and Liu, G.: The effect of 1-(2-pyridylazo)-2-naphthol on the corrosion of cold rolled steel in acid media: Part 2: Inhibitive action in 0.5 M sulfuric acid; Mater. Chem. Phys. 97 (2006) 301. http://dx.doi.org/10.1016/j.matchemphys.2005.08.014.Search in Google Scholar
46. Ashassi-Sorkhabi, S. H. and Seifzadeh, B. D.: Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid; Appl. Surf. Sci.239 (2005) 154. 10.1016/j.apsusc.2004.05.143Search in Google Scholar
47. Magdassi, S., Frenkel, M. and Garti, N.: On the factors affecting the yield of preparation and stability of multiple emulsions; J. Dispersion Sci. Technol.5 (1984) 49. 10.1080/01932698408943207Search in Google Scholar
48. Rein, M.: Phenomena of liquid drop impact on solid and liquid surfaces; Fluid Dyn. Res.12 (1993) 61. 10.1016/0169-5983(93)90106-KSearch in Google Scholar
49. Samuel, L. M. and Jiann, C. Y.: An experimental study of high Weber number impact of methoxy-nonafluorobutane C4F9OCH3 (HFE-7100) and n-heptane droplets on a heated solid surface; Int. J. Heat Mass Transf. 45 (2002) 3961; (02) 00103-5. 10.1016/S0017-9310Search in Google Scholar
50. Strickland, W. T.: Laboratory results of cleaning produced water by gas flotation; J. Soc. Pet. Eng.20 (1980) 175. 10.2118/7805-PASearch in Google Scholar
51. Hiemenz, P. C. and Rajagopalan, R.: Principles of Colloid and Surface Chemistry, 3rd Edition, Dekker: New York, 1997, p. 272; ISBN: 0824793978.Search in Google Scholar
52. Oliveira, R. C. G., Gonzalez, G. and Oliveira, J. F.: Interfacial studies on dissolved gas flotation of oil droplets for water purification; Colloids Surf. A: Physicochem. Eng. Aspects154 (1999) 127. 10.1016/S0927-7757(98)00890-5Search in Google Scholar
© 2015, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergents
- Comparison Test of Oily Soil Removal of Japanese Laundry Detergents Using a Regression Formula to Derive Soil Quantity from K/S Value of Colored Oil
- Influence of Special Clays as Builder in Ecological Detergents
- Synthesis
- Syntheses of Tartaric Acid-Based Hybrid Gemini Surfactants Containing Fluorocarbon and Hydrocarbon Chains
- Study on Cardanolbetaine Surfactants for Ultralow Interfacial Tension in a Low Range of Surfactant Concentration and Wide Range of Temperature Applied in Compound Flooding
- Mizellar Catalysis
- Room Temperature Micellar Catalysis on Permanganate Oxidation of Butanol to Butanal in Aqueous Medium at Atmospheric Pressure
- Environmental Chemistry
- Tween-20 Modified Acacia nelotica and Oryza sativa Biomass for Enhanced Biosorption of Cr(VI) in Aqueous Environment
- Physical Chemistry
- Physico-Chemical Studies of Glycine, L-Alanine, L-Phenylalanine and Glycylglycine in Aqueous Triton X-100 at Different Temperatures
- Effect of Polyacrylic Acid and Polyacrylamide on Clouding Behavior of Triton-X-100 in Aqueous Medium
- Model Based Approach to Study of Release Kinetics of the Drug Chlorhexidine from Hydrogels
- Application
- Micellization Behaviour of m-E2-m Biodegradable Gemini Surfactants in Presence of Sodium Alkanoates (Sodium Propionate, Sodium Hexanoate, Sodium Decanoate)
- Destabilization of Gas Condensate Oil-Water Emulsion by Dissolved Air Flotation Using New Non Ionic Surfactants
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergents
- Comparison Test of Oily Soil Removal of Japanese Laundry Detergents Using a Regression Formula to Derive Soil Quantity from K/S Value of Colored Oil
- Influence of Special Clays as Builder in Ecological Detergents
- Synthesis
- Syntheses of Tartaric Acid-Based Hybrid Gemini Surfactants Containing Fluorocarbon and Hydrocarbon Chains
- Study on Cardanolbetaine Surfactants for Ultralow Interfacial Tension in a Low Range of Surfactant Concentration and Wide Range of Temperature Applied in Compound Flooding
- Mizellar Catalysis
- Room Temperature Micellar Catalysis on Permanganate Oxidation of Butanol to Butanal in Aqueous Medium at Atmospheric Pressure
- Environmental Chemistry
- Tween-20 Modified Acacia nelotica and Oryza sativa Biomass for Enhanced Biosorption of Cr(VI) in Aqueous Environment
- Physical Chemistry
- Physico-Chemical Studies of Glycine, L-Alanine, L-Phenylalanine and Glycylglycine in Aqueous Triton X-100 at Different Temperatures
- Effect of Polyacrylic Acid and Polyacrylamide on Clouding Behavior of Triton-X-100 in Aqueous Medium
- Model Based Approach to Study of Release Kinetics of the Drug Chlorhexidine from Hydrogels
- Application
- Micellization Behaviour of m-E2-m Biodegradable Gemini Surfactants in Presence of Sodium Alkanoates (Sodium Propionate, Sodium Hexanoate, Sodium Decanoate)
- Destabilization of Gas Condensate Oil-Water Emulsion by Dissolved Air Flotation Using New Non Ionic Surfactants