Startseite Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique

  • Bode Haryanto , Jo-Shu Chang und Chien-Hsiang Chang
Veröffentlicht/Copyright: 25. September 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The potential of using the biosurfactant surfactin to remove adsorbed metal ions from sand surfaces with continuous flushing approaches was evaluated. With the surfactin solution flushing approach, low removal efficiency of 2–15% for copper ions was detected due to the contact of surfactin with copper ions occurring mainly in the inter-particle pore region. The channeling effect also contributed to the low removal efficiency. By incorporating foam in the flushing operation, the contact of surfactin with copper ions was enhanced due to reduced channeling effect. More copper ions with outer-sphere interaction type were thus available and the removal efficiency was increased. Increasing the surfactin concentration could increase the dynamic foaming capacity and lead to improved removal efficiency of 40%. The results demonstrated that the foam-enhanced solution flushing approach was efficient with a low usage of surfactin.

Kurzfassung

Die Möglichkeit, das Biotensid Surfactin einzusetzen, um adsorbierte Metallionen von Sandoberflächen mit kontinuierlichen Flushing-Techniken (Spülverfahren) zu entfernen, wurde bestimmt. Die Flushing-Techniken mit Surfactinlösungen lieferten einen nur geringen Wirkungsgrad für Kupferionen von 2–15%, weil der Kontakt zwischen Surfactin und den Kupferionen hauptsächlich nur in der Porenregion zwischen den Partikeln auftritt. Der Channelling-Effekt trug ebenfalls zum geringen Wirkungsgrad bei der Entfernung der Kupferionen bei. Indem man Schaum in die Flushing-Technik eingebrachte, wurde der Kontakt des Surfactins mit den Kupferionen wegen des reduzierten Channelling-Effekts verstärkt. Damit standen mehr Kupferionen zur Verfügung, die mit der äußeren Umgebung in Wechselwirkung treten konnten und der Wirkungsgrad wurde erhöht. Eine Zunahme der Surfactinkonzentration konnte das dynamische Schaumvermögen erhöhen und zu einer verbesserten Entfernungseffizienz von 40% führen. Die Ergebnisse zeigen, dass die durch Schaum verstärkte Flushing-Technik mit einer geringen Surfactiondosierung leistungsfähig war.


* Correspondence address Chien-Hsiang Chang, 1 Ta-Hsueh Road, Tainan 701, Taiwan. Tel.: (+) 886-6-2757575 ext. 62671, Fax: (+) 886-6-2344496, E-Mail:

Bode Haryanto is a Ph.D. student at the Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan. His research interest is the biosurfactant applications on soil remediation.

Jo-Shu Chang is a professor at the Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan. He received his Ph.D. degree in Chemical/Biochemical Engineering at University of California, Irvine, USA. His research interests include environmental biotechnology, biochemical engineering, and biohydrogen technology.

Chien-Hsiang Chang is a professor at the Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan. He received his Ph.D. degree in Chemical Engineering at Purdue University, USA. His research interest is colloid and surface chemistry, especially on the subjects of surfactant solution properties and applications.


References

1. Siegel, F. R.: Environmental geochemistry of potentially toxic metals. Springer-Verlag, Heidelberg Berlin (2002). DOI: 10.1007/978-3-662-04739-2Suche in Google Scholar

2. Bradl, H. B.: Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci.277 (2004) 118. DOI: 10.1016/j.jcis.2004.04.005Suche in Google Scholar

3. Herman, D. C., Artiola, J. F. and Miller, R. M.: Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ. Sci. Technol.29, (1995) 22802285. DOI: 10.1021/es00009a019Suche in Google Scholar

4. Wang, S. and Mulligan, C.: Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water, Air, & Soil Pollut.157 (2004) 315330. DOI: 10.1023/B:WATE.0000038904.91977.f0Suche in Google Scholar

5. Wang, S. and Mulligan, C. N.: An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere57 (2004) 10791089. DOI: 10.1016/j.chemosphere.2004.08.019Suche in Google Scholar

6. Mulligan, C. N.: Environmental applications for biosurfactants. Environ. Pollut.133 (2005) 183198. DOI: 10.1016/j.envpol.2004.06.009Suche in Google Scholar

7. Mulligan, C. N., and Wang, S.: Remediation of a heavy metal-contaminated soil by a rhamnolipid foam. Eng. Geol.85 (2006) 7581. DOI: 10.1016/j.enggeo.2005.09.029Suche in Google Scholar

8. Dermont, G., Bergeron, M., Mercier, G. and Richer-Laflèche, M.: Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater.152 (2008) 131. DOI: 10.1016/j.jhazmat.2007.10.043Suche in Google Scholar

9. Chowdiah, P., Misra, B. R., KilbaneIi, J. J., Srivastava, V. J. and Hayes, T. D.: Foam propagation through soils for enhanced in-situ remediation. J. Hazard. Mater.62 (1998) 265280. DOI: 10.1016/S0304-3894(98)00191-5Suche in Google Scholar

10. Huang, C.-W. and Chang, C.-H.: A laboratory study on foam-enhanced surfactant solution flooding in removing n-pentadecane from contaminated columns. Colloids Surf. A-Physicochem. Eng. Asp.173 (2000) 171179. DOI: 10.1016/S0927-7757(00)00604-XSuche in Google Scholar

11. Raymundo, A., Empis, J. and Sousa, I.: Method to evaluate foaming performance. J. Food Eng.36 (1998) 445452. DOI: 10.1016/S0260-8774(98)00063-6Suche in Google Scholar

12. Razafindralambo, H., Paquot, M., Baniel, A., Popineau, Y., Hbid, C., Jacques, P. and Thonart, P.: Foaming properties of surfactin, a lipopeptide biosurfactant from bacillus subtilis. J. Am. Oil Chem. Soc.73 (1996) 149151. DOI: 10.1007/bf02523463Suche in Google Scholar

13. Mulligan, C. N., Yong, R. N., Gibbs, B. F., James, S. and Bennett, H. P. J.: Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environ. Sci. Technol.33 (1999) 38123820. DOI: 10.1021/es9813055Suche in Google Scholar

14. Chen, H., Wang, J., Rahman, Z., Worden, J., Liu, X., Dai, Q. and Huo, Q.: Beach sand from Cancun Mexico: a natural macro- and mesoporous material. J. Mater. Sci.42 (2007) 60186026. DOI: 10.1007/s10853-006-0970-2Suche in Google Scholar

15. Fetter, C. W.: Applied hydrogeology. 3rd edn.Maxwell Macmillan International, New York (1994).Suche in Google Scholar

16. Kaneko, K.: Determination of pore size and pore size distribution: 1. Adsorbents and catalysts. J. Membrane Sci.96, (1994) 5989. DOI: 10.1016/0376-7388(94)00126-XSuche in Google Scholar

17. De Las Casas, C. L., Bishop, K. G., Bercik, L. M., Johnson, M., Potzler, M., Ela, W. P., Sáez, A. E., Huling, S. G. and Arnold, R. G.: In-place regeneration of granular activated carbon using fenton's reagents. Remediation of Hazardous Waste in the Subsurface, American Chemical Society, (2006) 4365. DOI: 10.1021/bk-2006-0940.ch004Suche in Google Scholar

18. Awan, M. A., Qazi, I. A. and Khalid, I.: Removal of heavy metals through adsorption using sand. J. Environ. Sci.15 (2003) 413416.Suche in Google Scholar

19. Koretsky, C.: The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective. J. Hydrol.230 (2000) 127171. DOI: 10.1016/S0022-1694(00)00215-8Suche in Google Scholar

20. Wahba, M. and Zaghloul, A.: Adsorption characteristics of some heavy metals by some soil minerals. J. Appl. Sci. Res.3 (2007) 421426.Suche in Google Scholar

21. Ucun, H., Bayhan, Y K., Kaya, Y., Cakici, A. and Faruk Algur, O.: Biosorption of chromium(VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresource Technol.85 (2002) 155158. DOI: 10.1016/S0960-8524(02)00086-XSuche in Google Scholar

22. Benguella, B. and Benaissa, H.: Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Res.36 (2002) 24632474. DOI: 10.1016/S0043-1354(01)00459-6Suche in Google Scholar

23. Taqvi, S. I. H., Hasany, S. M. and Bhanger, M. I.: Sorption profile of Cd(II) ions onto beach sand from aqueous solutions. J. Hazard. Mater.141 (2007) 3744. DOI: 10.1016/j.jhazmat.2006.06.080Suche in Google Scholar PubMed

24. Ucun, H., Aksakal, O. and Yildiz, E.: Copper(II) and zinc(II) biosorption on Pinus sylvestrisL. J. Hazard. Mater.161 (2009) 10401045. DOI: 10.1016/j.jhazmat.2008.04.050Suche in Google Scholar

25. Strawn, D. G. and Sparks, D. L.: The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J. Colloid Interface Sci.216 (1999) 257269. DOI: 10.1006/jcis.1999.6330Suche in Google Scholar

26. Maget-Dana, R. and Ptak, M.: Interfacial properties of surfactin. J. Colloid Interface Sci.153 (1992) 285291. DOI: 10.1016/0021-9797(92)90319-HSuche in Google Scholar

27. Banat, I. M.: Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Bioresource Technol.51 (1995) 112. DOI: 10.1016/0960-8524(94)00101-6Suche in Google Scholar

28. Mulligan, C. N., Yong, R. N., and Gibbs, B. F.: Removal of heavy metals from contaminated soil and sediments using the biosurfactant Surfactin. J. Soil Contam.8 (1999) 231254. DOI: 10.1080/10588339991339324Suche in Google Scholar

29. Jeong, S.-W., Corapcioglu, M. Y. and Roosevelt, S. E.: Micromodel study of surfactant foam remediation of residual trichloroethylene. Environ. Sci. Technol.34 (2000) 34563461. DOI: 10.1021/es9910558Suche in Google Scholar

30. Yeh, M.-S., Wei, Y.-H. and Chang, J.-S.: Enhanced production of surfactin from bacillus subtilis by addition of solid carriers. Biotechnol. Prog.21 (2005) 13291334. DOI: 10.1021/bp050040cSuche in Google Scholar PubMed

31. Panuccio, M. R., Sorgonà, A., Rizzo, M. and Cacco, G.: Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. J. Environ. Manage.90 (2009) 364374. DOI: 10.1016/j.jenvman.2007.10.005Suche in Google Scholar PubMed

32. Razafindralambo, H., Popineau, Y., Deleu, M., Hbid, C., Jacques, P., Thonart, P. and Paquot, M.: Foaming properties of lipopeptides produced by bacillus subtilis: effect of lipid and peptide structural attributes. J. Agr. Food Chem.46 (1998) 911916. DOI: 10.1021/jf970592dSuche in Google Scholar

33. Chen, H.-L., Lee, Y.-S., Wei, Y.-H. and Juang, R.-S.: Purification of surfactin in pretreated fermentation broths by adsorptive removal of impurities. Biochem. Eng. J.40 (2008) 452459. DOI: 10.1016/j.bej.2008.01.020Suche in Google Scholar

34. Ishigami, Y., Osman, M., Nakahara, H., Sano, Y., Ishiguro, R. and Matsumoto, M.: Significance of β-sheet formation for micellization and surface adsorption of surfactin. Colloids Surf. B-Biointerfaces4 (1995) 341348. DOI: 10.1016/0927-7765(94)01183-6Suche in Google Scholar

35. Sen, R. and Swaminathan, T.: Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochem.40 (2005) 29532958. DOI: 10.1016/j.procbio.2005.01.014Suche in Google Scholar

36. Stokes, R. J. and Evans, D. F.: Fundamentals of interfacial engineering. Wiley-VCH, New York (1997).Suche in Google Scholar

37. Morikawa, M., Hirata, Y. and Imanaka, T.: A study on the structure–function relationship of lipopeptide biosurfactants. Biochim. Biophys. Acta-Mol. Cell Biol. L.1488 (2000) 211218. DOI: 10.1016/S1388-1981(00)00124-4Suche in Google Scholar

38. Bilke-Krause, C., Winkler, T. and Schörck, T.: Foam behavior and foam stability of aqueous surfactant solutions. vol 23. Hamburg, Germany (2010).Suche in Google Scholar

39. Lorenceau, E., Sang, Y. Y. C., Höhler, R. and Cohen-Addad, S.: A high rate flow-focusing foam generator. Phys. Fluids18 (2006) 097103. DOI: 10.1063/1.2353799Suche in Google Scholar

40. Zhang, Z., Freedman, V. L. and Zhong, L.: Foam transport in porous media: A review. Pacific Northwest National Laboratory, Washington (2009). DOI: 10.2172/1016458Suche in Google Scholar

41. Hutzler, S., Lösch, D., Carey, E., Weaire, D., Hloucha, M. and Stubenrauch, C.: Evaluation of a steady-state test of foam stability. Philos. Mag.91 (2010) 537552. DOI: 10.1080/14786435.2010.526646Suche in Google Scholar

42. Pandey, S., Bagwe, R. P. and Shah, D. O.: Effect of counterions on surface and foaming properties of dodecyl sulfate. J. Colloid Interface Sci.267 (2003) 160166. DOI: 10.1016/j.jcis.2003.06.001Suche in Google Scholar PubMed

43. Rothmel, R. K., Peters, R. W., St. Martin, E. and DeFlaun, M. F.: Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environ. Sci. Technol.32 (1998) 16671675. DOI: 10.1021/es970980wSuche in Google Scholar

44. Vikingstad, A. K., Aarra, M. G. and Skauge, A.: Effect of surfactant structure on foam–oil interactions: Comparing fluorinated surfactant and alpha olefin sulfonate in static foam tests. Colloids Surf. A-Physicochem. Eng. Asp.279 (2006) 105112. DOI: 10.1016/j.colsurfa.2005.12.047Suche in Google Scholar

45. Kim, J.-A., Dodbiba, G., Tanimura, Y., Mitsuhashi, K., Fukuda, N., Okaya, K., Matsuo, S. and Fujita, T.: Leaching of Rare-Earth Elements and Their Adsorption by Using Blue-Green Algae. Mater. Trans.52 (2011) 17991806. DOI: 10.2320/matertrans.M2011111Suche in Google Scholar

46. Argun, M. E., Dursun, S., Ozdemir, C. and Karatas, M.: Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J. Hazard. Mater.141 (2007) 7785. DOI: 10.1016/j.jhazmat.2006.06.095Suche in Google Scholar

47. Lai, C. H., Lo, S. L. and Chiang, H. L.: Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses. Chemosphere41 (2000) 12491255. DOI: 10.1016/S0045-6535(99)00534-2Suche in Google Scholar

48. Han, R., Zou, W., Zhang, Z., Shi, J. and Yang, J.: Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: I. Characterization and kinetic study. J. Hazard. Mater.137 (2006) 384395. DOI: 10.1016/j.jhazmat.2006.02.021Suche in Google Scholar

49. Mulligan, C. N. and Eftekhari, F.: Remediation with surfactant foam of PCP-contaminated soil. Eng. Geol.70 (2003) 269279. DOI: 10.1016/S0013-7952(03)00095-4Suche in Google Scholar

Received: 2014-01-08
Revised: 2014-01-21
Published Online: 2014-09-25
Published in Print: 2014-09-15

© 2014, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110322/html?lang=de
Button zum nach oben scrollen