Home Physical Sciences Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization
Article
Licensed
Unlicensed Requires Authentication

Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization

  • Roberta B. Lovaglio , Vinícius L. da Silva , Tulio de Lucca Capelini , Marcos N. Eberlin , Rudolf Hausmann , Marius Henkel and Jonas Contiero
Published/Copyright: September 25, 2014
Become an author with De Gruyter Brill

Abstract

This paper evaluates the effect of additives (NaCl and ethanol) on the solution properties of rhamnolipids. The properties are the surface activity, aggregate formations and emulsifying activity as well as the synergistic effects of additives and pH variations on the physical properties of rhamnolipids. Additionally, analysis of fatty acids and rhamnolipid homologues produced using different carbon sources was performed by mass spectrometry. The results indicate that this biosurfactant maintain its properties in the presence of additives. NaCl decreases the size and number of aggregates formed in solutions without pH control, while ethanol to rhamnolipid solutions reduces critical micelle concentration and favors aggregation of monomers. The profiles of fatty acids produced by P. aeruginosa LBI 2A1 varied according to the carbon source used, however for rhamnolipids there was no difference.

Kurzfassung

In diesem Beitrag wurde der Einfluss der Additive (NaCl und Ethanol) auf die Eigenschaften von Rhamnolipidlösungen bestimmt. Die Eigenschaften sind die Oberflächenaktivität, die Bildung von Aggregaten und die Emulsionsbildung. Des Weiteren wurden bestimmt die synergistischen Effekte der Additive und der Einfluss der pH-Wertänderungen auf die physikalischen Eigenschaften der Rhamnolipide. Eine Analyse der Fettsäuren und der mit verschiedenen Kohlenstoffquellen erzeugten Rhamnolipidhomologen wurde mittels Massenspektrometrie durchgeführt. Die Ergebnisse machen deutlich, dass dieses Biotensid seine Eigenschaften in Gegenwart der Additive behält. Ohne pH-Wert-Kontrolle verringert NaCl die Anzahl und Größe der in Lösung gebildeten Aggregate, während Ethanol in den Rhamnolipidlösungen die kritische Mizellenbildungskonzentration (CMC) reduziert und die Aggregation der Monomere bevorzugt. Die von P. aeruginosa LBI 2A1 erzeugten Fettsäureprofile variierten aufgrund der verwendeten Kohlenstoffquelle, für die Rhamnolipide machte das aber keinen Unterschied.


* Correspondence address Prof. Dr. Jonas Contiero, UNESP – Universidade Estadual Paulista, Department of Biochemistry and Microbiology, Institute of Biological Sciences, Av. 24-A, 1515 Bela Vista, CEP 13506-900, Rio Claro, SP, Brazil. Tel.: +551935264101, Fax: +551935264176, E-Mail:

Roberta B. Lovaglio is a post doc at São Paulo State University. She works in the Industrial Microbiology Laboratory and is involved in the field of Biosurfactants Production.

Vinícius L. da Silva is a Ph.D. student at São Paulo State University. He works in the Industrial Microbiology Laboratory and is involved in the field of Biosurfactants Production.

Tulio de Lucca Capelini is master on applied microbiology and works with rhamnolipids production.

Marcos N. Eberlin is a titular professor at Universidade Estadual de Campinas, and supervisor of ThoMSon Laboratory of Mass Spectrometry.

Rudolf Hausmann works with biosurfactants production at Institute of Food Science and Biotechnology, Section Bioprocess Engineering, University of Hohenheim, Stuttgart and Karlsruher Institut für Technologie (KIT).

Marius Henkel is Ph.D. student at Karlshure Institute of Technology. He works with rhamnolipids production.

Jonas Contiero teaches Biochemistry and industrial Microbiology in the department of Biochemistry and Microbiology at Unesp-Univ. Estadual Paulista and heads a research team LMI (Industrial Microbiology Lab.), involved in the field of Metabolites Production by Microorganisms.


References

1. Parra, J. L., Guinea, J., Manresa, M. A., Robert, M., Mercadé, M. E., Comelles, F. and Bosh, M. P.: Chemical characterization and physicochemical behavior of biosurfactants. J. Am. Oil Soc.66 (1989) 141145. DOI: 10.1007/BF02661805Search in Google Scholar

2. Abalos, A., Pinazo, A., Infante, M. R., Casals, M., García, F. and Manresa, A.: Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, Washington17 (2001) 13671371. DOI: 10.1021/la0011735Search in Google Scholar

3. Benincasa, M., Abalos, A., Oliveira, I. and Manresa, A.: Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Anton. Leeuw. Int. J. G.85 (2004) 18. DOI: 10.1023/B:ANTO.0000020148.45523.41Search in Google Scholar

4. PornsunthorntaweeA. O., Chavadej, S. and Rujiravanit, R.: Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Colloid Surf. B-Biointerfaces72 (2009) 16. DOI: 10.1016/j.colsurfb.2009.03.006Search in Google Scholar

5. Lovaglio, R. B., Santos, F. J., JafelicciJr., M., and Contiero, J.: Rhamnolipids emulsifying activity nd emulsion stability: pH rules. Colloid Surf. B-Biointerfaces.85 (2011) 301305. DOI: 10.1016/j.colsurfb.2011.03.001Search in Google Scholar

6. Vinson, P. K., Talmon, Y. and Walter, A.: Vesicle-micelle transition of phosphatidylcholine and octylglucoside elucidated by cryo-transmission electron microscopy Biophys. J.56 (1989) 669681. DOI: 10.1016/S0006-3495(89)82714-6Search in Google Scholar

7. Sánchez, M., Aranda, F. J., Espuny, M. J., Marqués, A., Teruel, J. A., Manresa, A. and Ortiz, A.: Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media. J. Colloid Interface Sci.307 (2007) 246253. DOI: 10.1016/j.jcis.2006.11.041Search in Google Scholar

8. Champion, J. T., Gilkey, J. C., Lamparski, H., Retterer, J. and Miller, R. M.: Electron Microscopy of rhamnolipids (biosurfactant) morphology: effect of pH, cadmium and octadecane. J. Colloid Interface Sci.170 (1995) 569574. DOI: 10.1006/jcis.1995.1136Search in Google Scholar

9. Mata-Sandoval, J. C., Karns, J. and Torrents, A.: HPLC method for the characterization of rhamnolipids mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. A864 (1999) 211220. DOI: 10.1016/S0021-9673(99)00979-6Search in Google Scholar

10. Villeneuve, M., Ikeda, N., Motomura, K. and Artono, M.: Miscibility of Butanol and Cationic Surfactant in the Adsorbed Film and Micelle. J. Colloid and Interface Sci.208 (1998) 388398. DOI: 10.1006/jcis.1998.5849Search in Google Scholar PubMed

11. Mulligan, C. N.: Environmental applications for biosurfactants. Environ. Pollution, Barking133 (2005) 183198. DOI: 10.1016/j.envpol.2004.06.009Search in Google Scholar PubMed

12. Lang, S. and Wagner, F.: Structure and properties of biosurfactants, in: Kosaric, N., Cairns, W. L., Gray, N. C. C. (Ed), Biosurfactants and Biotechnology. New York: Marcel Dekker, 1987.Search in Google Scholar

13. Abdel-Mawgoud, A. M., Lépine, F. and Déziel, E.: Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol.86 (2010) 13231336. DOI: 10.1007/s00253-010-2498-2Search in Google Scholar PubMed PubMed Central

14. Guerra-Santos, L., Käppeli, O. and Fiechter, A.: Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. and Environ. Microbiol. Washington48, n. 2 (1984) 301305.Search in Google Scholar

15. Müller, M. M., Hörmann, B., Kugel, M., Syldatk, C. and Hausmann, R.: Evaluation of rhamnolipids production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipids over-producer strains DSM 7108 and DSM 2874. Appl. Microbiol. Biotechnol.89 (2011) 585592. DOI: 10.1007/s00253-010-2901-zSearch in Google Scholar PubMed

16. Cohen, R. and Exerowa, D.: Surface forces and properties of foam films from rhamnolipid biosurfactants. Adv. Colloid Interface Sci.134, 135 (2007) 2434. DOI: 10.1016/j.cis.2007.04.018Search in Google Scholar PubMed

17. Han, F., He, X., Huang, J., Li, Z., Wang, Y. and Fu, H.: Surface Properties and Aggregates in the Mixed Systems of Bolaamphiphiles and Their Oppositely Charged Conventional Surfactants.J. Phys. Chem. B108 (2004) 52565262. DOI: 10.1021/jp0497920Search in Google Scholar

18. Helvaci, S. S., Peker, S. and Özdemir, G.: Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Colloid Surf. B-Biointerfaces.35 (2004) 225233. DOI: 10.1016/j.colsurfb.2004.01.001Search in Google Scholar PubMed

19. Ishigami, Y.Gama, H.Ishi, F., Choi, Y. K.: Colloid Chemical Effect of Polar Head Moieties of a Rhamnolipid-Type Biosurfactant. Langmuir9 (1993) 16341636. DOI: 10.1021/la00031a006Search in Google Scholar

20. Catharino, R. R., Milagre, H. M. S., Saraiva, S. A., Garcia, C. M., Schuchardt, U. and Eberlin, M. N.: Biodiesel typification and quality control by direct infusion electrospray ionization mass spectrometry fingerprinting. Energy & Fuels21 (2007) 36983701. DOI: 10.1021/ef7003078Search in Google Scholar

21. Gupta, M. K.: Sunflower oil. In Gunstone, F. D.Vegetables oil in food technology: composition, properties and uses. Blackwell Publishing, 2002.Search in Google Scholar

22. Lépine, F., Déeziel, E., Milot, S. and Villemur, R.: Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy)alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J. Mass Spectrom.37 (2002) 4146. DOI: 10.1002/jms.244Search in Google Scholar PubMed

23. Shen, W., Yang, S. and Li, X.: Electrospray ionization mass spectrometry detection of rhamnolipids and their acid precursors in Pseudomonas sp. BS-03 cultures. China Biotechnol.25 (2005) 8387.Search in Google Scholar

24. Déziel, E., Lepini, F., Milot, S. and Villemur, R.: rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol., New York149 (2003) 20052013.Search in Google Scholar

25. Nie, M., Yin, X., Ren, C., Wang, Y., Xu, F. and Shen, Q.: Novel rhamnolipids biosurfactant produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa NY3. Biotechnol. Advances28 (2010) 635643. DOI: 10.1016/j.biotechadv.2010.05.013Search in Google Scholar PubMed PubMed Central

26. Kim, H., Kuo, T. M. and Hou, C. T.: Production of 10,12-dihydroxy-8(E)-octadecenoic acid, an intermediate in the conversion of ricinoleic acid to 7,10,12-trihydroxy-8(E)-octadecenoic acid by Pseudomonas aeruginosa PR3. J. Ind. Microbiol. Biotechnol.24 (2000) 167172. DOI: 10.1038/sj.jim.2900804Search in Google Scholar

27. Kuo, T. M., Manthey, L. K. and Hou, C. T.: Fatty Acid Bioconversions by Pseudomonas aeruginosa PR3. JAOCS75 (1998) 875879. DOI: 10.1007/s11746-998-0240-3Search in Google Scholar

28. Hou, C. T. and Forman, R. J.: Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. J Ind Microbiol Biotechnol.24 (2000) 275, 276.Search in Google Scholar

29. Shin, S. Y., Kim, H. R. and Kang, S. C.: Antibacterial activity of various hydroxy fatty acids bioconverted by Pseudomonas aeruginosa PR3. Agric Chem Biotechnol.47 (2004) 205208.Search in Google Scholar

30. Bae, J. H., Kim, D., Suh, M., Oh, S., Lee, I., Kang, S., Hou, C. T. and Kim, H.: Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3. Appl Microbiol Biotechnol.75 (2007) 435440. DOI: 10.1007/s00253-006-0832-5Search in Google Scholar

31. Nitschke, M., Costa, S. G. V. A. and Contiero, J.: Structure and Applications of a Rhamnolipid Surfactant Produced in Soybean Oil Waste. Appl. Biochem. Biotechnol.160 (2010) 20662074. DOI: 10.1007/s12010-009-8707-8Search in Google Scholar

32. Perfumo, A., Banat, I. M., Canganella, F. and Marchant, R.: Rhamnolipid production by a novel thermophilic hydrocarbon3degrading Pseudomonas aeruginosa APO231. Appl. Microbiol. Biotechnol.72 (2006) 132138. DOI: 10.1007/s00253-005-0234-0Search in Google Scholar

33. Deziel, E., Lepine, F., Dennie, D., Boismenu, D., Mamer, O. A. and Villemur, R.: Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim. Biophys. Acta1440 (1999) 244252. DOI: 10.1016/S1388-1981(99)00129-8Search in Google Scholar

34. Deziel, E., Lepine, F., Milot, S. and Villemur, R.: Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim. Biophys. Acta1485 (2000) 145152. DOI: 10.1016/S1388-1981(00)00039-1Search in Google Scholar

35. Zhu, K. and Rock, C. O.: RhlA converts β-Hydroxyacyl-Acyl carrier protein Intermediates in fatty Acid synthesis to the β-Hydroxydecanoyl-β-Hydroxydecanoate Component of rhamnolipids in Pseudomonas aeruginosa. J. of Bacteriol., Washington190, n.9 (2008) 31473154.Search in Google Scholar

36. HoangT.T. and SchweizerH.P.: Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserina lactone synthesis. J. Bacteriol.181 (1999) 54895497.Search in Google Scholar

Received: 2013-11-13
Revised: 2014-06-12
Published Online: 2014-09-25
Published in Print: 2014-09-15

© 2014, Carl Hanser Publisher, Munich

Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110321/pdf
Scroll to top button