Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant
-
Akash P. Bhangale
Abstract
The importances of bio-surfactants in industrial applications are huge due to their biodegradable and eco-friendly nature. Bio-surfactants mostly find application in cosmetics and health care products. Moreover, bio-surfactants like sophorolipids (SL) also exhibit antimicrobial and skin healing properties. The current studies involve production of SL using low cost substrates like glycerol (15%) instead of glucose (10%) with non-traditional oils (10%) such as jatropha oil, karanja oil and neem oil by using Starmerella bombicola (ATCC 22214). Neem oil gave lower yield i.e. (1.42 g/L) of SL as compared to jatropha oil (4.74 g/L) and karanja oil (5.91 g/L) with glycerol as substrate. Some pretreatment given to crude neem oil like oil refining and ethanol washing with glycerol helps in improved cell growth and SL yield i.e. 2.73 g/L and 3.82 g/L respectively. The comparison thin layer chromatography (TLC), Fourier Transform infrared spectra (FTIR), high performance liquid chromatography (HPLC), liquid chromatography mass spectra (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) of SL produced on non-traditional oils with glycerol were carried out with that of SL produced on non-traditional oils with glucose. The surfactant properties of sodium lauryl sulphate (SLS) such as surface tension, interfacial tension, stabilization of foam, emulsification, and wetting were improved when SLS was replaced at different concentration of SL.
Kurzfassung
Biotenside in industriellen Anwendungen haben große Bedeutung aufgrund ihrer biologischen Abbaubarkeit und ihrer umweltfreundlichen Eigenschaften. Biotenside findet man hauptsächlich in Kosmetik und Gesundheitsprodukten. Darüber hinaus zeigen Biotenside wie Sophorolipide (SL) antimikrobielle und hautheildende Eigenschaften. Die gegenwärtigen Untersuchungen beschäftigen sich mit der Produktion von SL, bei der preiswerte Substrate wie Glycerol (15%) statt Glucose (10%) und nicht-traditionelle Öle wie Jatrophaöl, Karanjaöl und Neemöl unter Einsatz von Starmerella bombicola (ATCC 22214) verwendet werden. Im Vergleich zu Jatrophaöl (4.74 g/L) und Karanjaöl (5.91 g/L) lieferte Neemöl (1.42 g/L) mit Glycerol als Substrat eine geringere Ausbeute an Sophorolipiden. Einige Vorbehandlungen des Rohneemöls wie Ölraffinierung und Ethanolwäsche mit Gylcerol bewirkten eine Verbesserung des Zellwachstums und der SL-Ausbeute (2.73 g/L bzw. 3.82 g/L). Mittels der Methoden FT-IR, HPLC, LC-MS und 1H-NMR wurden SL, die aus nicht-traditonellen Ölen mit Glycerol erzeugt wurden, mit den SL verglichen, die man aus nicht-traditonellen Ölen mit Glucose erhielt. Die tensidischen Eigenschaften von Natriumlaurylsulfat (SLS) wie Grenz- und Oberflächenspannung, Schaumstabilität, Emulgierung und Benetzung wurden verbessert, wenn SLS in bestimmten Anteilen durch SL ersetzt wurde.
References
1. Banat, I. M., Makkar, R. S. and Cameotra, S. S.: Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol.53 (2000) 495–508. DOI: 10.1007/s002530051648.Suche in Google Scholar
2. Raiders, R. A., Knapp, R. M. and McInerney, M. J.: Microbial selective plugging and enhanced oil recovery. J. Ind. Microbiol.4 (1989) 215–230. DOI: 10.1007/BF01574079.Suche in Google Scholar
3. Bhangale, A., Patil, S., Wadekar, S., Kale, S., Lali, A., Bhowmick, D. and Pratap, A.: Stabilization of Foam Produced by Sodium Lauryl Sulphate with Mannosylerythritol Lipids Synthesized on soybean oil and sucrose by Pseudozyma antarctica (ATCC 32657). Tenside Surf. Det.50 (2) (2013) 131–136. DOI: 10.1007/s12257-012-0647-4.Suche in Google Scholar
4. Solaiman, D. K. Y., Ashby, R. D., Nunez, A. and Foglia, T. A.: Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotechnol. Lett.29 (2007) 1341–1347. DOI: 10.1007/s10529-007-9407-5.Suche in Google Scholar
5. Hommel, R. K. and Huse, K.: Regulation of sophorose lipid production by Candida apicola. Biotechnol. Lett.33 (1993) 853–858. DOI: 10.1007/978-94-011-3452-1.Suche in Google Scholar
6. Gorin, P. A., Spencer, J. F. T. and Tulloch, A. P.: Hydroxy fatty acid and glycolipids of sophorose from Torulopsis magnoliae. Can. J. Chem.39 (1961) 846–895. DOI: 10.1139/v61-104.Suche in Google Scholar
7. Nunez, A., Ashby, R. and Foglia, T. A.: LC/MS analysis and lipase modification of the sophorolipids produced by Rhodotorula bogoriensis. Biotechnol. Lett.26 (2004) 1087–1093. DOI: 10.1023/B.BILE.0000032970.95603.6d.Suche in Google Scholar
8. Muthusamy, K., Gopalakrishnan, S., Kochupappy, R. and Sivachidambaram, P.: Biosurfactants: Properties, commercial production and application. Curr. Sci.94 (6) (2008) 736–747.Suche in Google Scholar
9. Shah, V., Doncel, G. F., Seyoum, T., Eaton, K. M., Zalenskaya, I., Hagver, R., Azim, A. and Gross, R.: Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob. Agents Chemother49 (10) (2005) 4093–4100. DOI: 10.1128/AAC.49.10.4093-4100.2005.Suche in Google Scholar
10. Hirata, Y., Ryu, M., Oda, Y., Igarashi, K., Nagatsuka, A., Furuta, T. and Sugiura, M.: Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J. Biosci. Bioeng.108 (2) (2009) 142–146. DOI: 10.1016/j.jbiosc.2009.03.012.Suche in Google Scholar
11. LingjianShao, XinSong, XiaojingMa, HuiLi and YinboQu: Bioactivities of Sophorolipid with Different Structures Against Human EsophagealCancer Cells173 (2) (2012) 286–291. DOI: 10.1016/j.jss.2010.09.013.Suche in Google Scholar
12. Inge, N. A., Van, B., Karen, S., Cassandra, D. M., Dirk, D., Wim, S. and Erick, J. V.: Microbial production and application of sophorolipids. Appl. Microbiol. Biotechnol.76 (2007) 23–34. DOI: 10.1007/s00253-007-0988-7.Suche in Google Scholar
13. William, K.: Biosurfactants for cosmetic application: Overcoming production challenges, MMG 445, Basic Biotechnol.5 (2009) 78–83.Suche in Google Scholar
14. Allingham, R. P.: Sophoroside esters in prepared food products, US Patent3 (1971) 344, 622.Suche in Google Scholar
15. Wadekar, S. D., Kale, S. B., Lali, A. M., Bhowmick, D. N. and Pratap, A. P.: Jatropha oil and karanja oil as carbon sources for production of sophorolipids. Eur. J. Lipid Sci. Technol.114 (2012) 823–832. DOI: 10.1002/ejlt.201100282Suche in Google Scholar
16. Cooper, D. G. and Paddock, D. A.: Production of a biosurfactant from Torulopsis bombicola. Appl. Environ. Microbiol.47 (1984) 173–176. DOI: 0099-2240/84/010173-04$02.00/0Suche in Google Scholar
17. Zhou, Q. H., Kiekner, V. and Kosaric, N.: Production of sophorose lipids by Torulopsis bombicola from safflower oil and glucose. J. Am. Oil. Chem. Soc.69 (1992) 89–91. DOI: 10.1007/BF02635883.Suche in Google Scholar
18. Wadekar, S. D., Kale, S. B., Lali, A. M., Bhowmick, D. N. and Pratap, A. P.Utilization of sweetwater as a cost-effective carbon source for sophorolipids production by Starmerella bombicola (ATCC 22214). Prep. Biochem. Biotechnol.42 (2) (2012) 125–142. DOI: 10.1080/10826068.2011.577883Suche in Google Scholar
19. Firestone, D. (ed.): Official Methods and Recommended Practices of the American Oil Chemists’ Society, AOCS Press, Champaign. (1994).Suche in Google Scholar
20. Firestone, D.: Official Methods and Recommended Practices of the American Oil Chemists’ Society, A.O.C.S. Method Ce-1-62 In, AOCS Press, Champaign. (1994).Suche in Google Scholar
21. Hodge, J. E. and Hofreiter, B. T.: Determination of reducing sugars and carbohydrates. In: Methods in Carbohydrate Chemistry, R. L.Whistler, M. L.Wolfrom, eds., Press Inc, New York, Vol. I, pp. (1962) 380–394. DOI: 10.1021/ed040pA394Suche in Google Scholar
22. Kretschmer, A., Bock, H. and Wagner, F.: Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Environ. Microbiol.44 (1982) 864–870. DOI: 099-2240/82/100864-07$02.00/0Suche in Google Scholar
23. Casas, J. A. and Garcia-OchoaF.: Sophorolipid production by Candida bombicola: Medium composition and culture methods. J. Biosci. Bioeng.88 (1999) 488–494. DOI: 10.1016/S1389-1723(00)87664-1.Suche in Google Scholar
24. Firestone, D.: Official Method and Recommended Practices of the American Oil Chemists’ Society A.O.C.S Method Ce-2-66 In, AOCS Press, Illinois (1993) 2–66.Suche in Google Scholar
25. Rosen, M. J.: Surfactants and Interfacial phenomena, 3rd edn., A John Wiley & Sons Inc, Hoboken, New Jersey (2004) 277–302. DOI: 10.1002/0471670561.Suche in Google Scholar
26. Seyferth, H. and Morgan, O. M.: The canvas disc wetting test. Am. Dyestuff Reporter.27 (1938) 525–529.Suche in Google Scholar
27. Ross, J. and Miles, G. D.: An apparatus for comparison of foaming properties of soaps and detergents. Oil Soap.18 (1941) 99–102. DOI: 10.1007/BF02545418.Suche in Google Scholar
28. Subrahmanyam, V. V. R. and Achaya, K. Y.: Structure and Surfactance-Evaluation of Ricinoleyl Alcohol. J. Chem. Eng. Data.6 (1961) 38–42. DOI: 10.1021/je60009a012.Suche in Google Scholar
29. Hall, P. J., Haverkamp, J., van Kraligen, C. J. and SchmidtM.: Synergistic dual surfactant detergent composition containing sophoroselipid. US Patent5 (1995) 417–879.Suche in Google Scholar
30. Inoue, S., Kimura, Y. and Kinta, M.: Process for producing a glycolipid ester. US Patent 4215213.Suche in Google Scholar
31. Asmer, H. J., Slegmund, L., Fritz, W. and Wray, V.: Microbial production structure elucidation and bioconversion of Sophoroselipids, J. Am. Oil Chem. Soc.65 (1988) 1460–1466. DOI: 10.1007/BF02898308.Suche in Google Scholar
32. Boeke, S. J., Boersma, M. G., Alink, G. M. and van Loon, J. J. A.: Review, safety evaluation of neem (Azadirachta indica) derived pesticides. J. Ethnopharmacol.94 (2004) 25–41. DOI: 10.1016/j.jep.2004.05.011Suche in Google Scholar PubMed
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Special Theme: Green Surfactants – Synthesis, Properties, Performance and Application
- Novel Cationic Gemini Surfactants and Methods for Determination of Their Antimicrobial Activity – Review
- Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant
- Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization
- Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique
- Synthesis and Properties of a Series of CO2 Switchable Gemini Imidazolium Surfactants
- Phase Behavior and Solubilization of Microemulsion Systems Containing Imidazolium Type Surfactant CnmimBr and Butyric Acid as Cosurfactant
- Synthesis and Solution Properties of New Polysiloxane Bola Surfactants Containing Carbohydrate
- Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
- Micellar Encapsulation of Some Polycyclic Aromatic Hydrocarbons by Glucose Derived Non-Ionic Gemini Surfactants in Aqueous Medium
- Environmental Chemistry
- Removal of Non-Ionic Surfactants in an Activated Sludge Sewage Treatment Plant
- Cleaning Technology
- Impact of Artificial UV-Light on Optical and Protective Effects of Cotton After Washing with Detergent Containing Fluorescent Compounds
- Simulating Consumer-Like Air Drying of Dishes via Thermal Drying Process
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Special Theme: Green Surfactants – Synthesis, Properties, Performance and Application
- Novel Cationic Gemini Surfactants and Methods for Determination of Their Antimicrobial Activity – Review
- Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant
- Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization
- Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique
- Synthesis and Properties of a Series of CO2 Switchable Gemini Imidazolium Surfactants
- Phase Behavior and Solubilization of Microemulsion Systems Containing Imidazolium Type Surfactant CnmimBr and Butyric Acid as Cosurfactant
- Synthesis and Solution Properties of New Polysiloxane Bola Surfactants Containing Carbohydrate
- Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
- Micellar Encapsulation of Some Polycyclic Aromatic Hydrocarbons by Glucose Derived Non-Ionic Gemini Surfactants in Aqueous Medium
- Environmental Chemistry
- Removal of Non-Ionic Surfactants in an Activated Sludge Sewage Treatment Plant
- Cleaning Technology
- Impact of Artificial UV-Light on Optical and Protective Effects of Cotton After Washing with Detergent Containing Fluorescent Compounds
- Simulating Consumer-Like Air Drying of Dishes via Thermal Drying Process