Synthesis and Antitumor and Surface Activity of Novel Tetrachloro Metallate Complexes of Sulfaquinoxaline with Co(II), Cu(II), or Sn(II) Chlorides
-
Nashwa Saleh
, Manal Khowdiary und Abdel Fattah Badawi
Abstract
New sulfonamide tetrachloro metallate complexes that might possess strong carbonic anhydrase (CA) inhibitory properties were synthesized by the reaction of 4-amino-N-(quinoxalin-2-yl) benzene sulfonamide (sulfaquinoxaline) hydrochloride with different metal chlorides, i.e. CoCl2, CuCl2 or SnCl2. The produced metal complexes of the sulfonamide derivative, containing divalent cations, were characterized by standard procedures. These metal complexes might possess topical antiglaucoma properties which might make them more effective as pharmacological agents. The synthesized complexes exhibited significant cytotoxic activity against colon HCT-116 human cell line. Surface properties of these surfactants were investigated. The surface properties studies included critical micelle concentration (CMC), maximum surface excess (Γmax), minimum surface area (Amin). Free energy of micellization (ΔG°mic) and adsorption (ΔG°ads) were calculated.
Kurzfassung
Neue Sulfonamidtetra chlorometallat-Komplexe, die Carboanhydrase (CA) deutlich hemmen können, wurden in einer Reaktion des 4-Amino-N-2-quinoxalinylbenzensulfonamidhydrochlorids (= Sulfaquinoxalinhydrochlorid) mit verschiedenen Metallchloriden (CoCl2, CuCl2 oder SnCl2) synthetisiert. Die synthetisierten Metall-Komplexe der Sulfonamidderivate enthalten divalente Kationen und wurden mit Standardverfahren charakterisiert. Die Metallkomplexe könnten lokal gegen Glaukom wirken, was sie als pharmakologische Agenzien noch effektiver macht. Die synthetisierten Komplexe sind signifikant zytotoxisch aktiv gegen die humane kolorektale Karzinom-Zelllinie HCT-116. Die Oberflächeneigenschaften dieser Tenside wurden untersucht. Hierzu gehören die kritische Mizellbildungskonzentration (CMC), der maximale Oberflächenüberschuss (Γmax) und der minimale Platzbedarf an der Oberfläche (Amin). Die freien Energien der Mizellenbildung (ΔG°mic) und der Adsorption (ΔG°ads) wurden auch berechnet.
References
1. Abbate, F., Casini, A., Owa, T., Scozzafava, A. and Supuran, C. T.: Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorg. Med. Chem. Lett.14 (2004) 217–223. DOI: 10.1016/j.bmc.2003.09.062Suche in Google Scholar
2. Ghorab, M. M., Noaman, E., Ismail, M. M. F., Heiba, H. I., Ammar, Y. A. and Sayed, M. Y.: Novel antitumor and radio protective sulfonamides containing pyrrolo[2,3-d] pyrimidines. Arzneimittelforschung56 (2006) 405–413. DOI: 10.1055/j.bmc.0031.1296742Suche in Google Scholar
3. Ghorab, M. M., Ragab, F. A. and Hamed, M. M.: Design, synthesis and anticancer evaluation of novel tetrahydroquinoline derivatives containing sulfonamide moiety. Eur. J. Med. Chem.44 (2009) 4211–4217. DOI: 10.1016/j.ejmech.2009.05.017Suche in Google Scholar PubMed
4. Ismail, M. M., Ghorab, M. M., Noaman, E., Ammar, Y. A., Heiba, H. I. and Sayed, M. Y.: Novel synthesis of pyrrolo [2,3-d]pyrimidine bearing sulfonamide moieties as potential antitumor and radioprotective agents. Arzneimittelforschung56 (2006) 301–308. DOI: 10.1055/j.ccr.0031.1296725Suche in Google Scholar
5. Rostom, S. A.: Synthesis and in-vitro antitumor evaluation of some indeno[1,2-c] pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorg. Med. Chem.14 (2006) 6475–6485. DOI: 10.1016/j.bmc.2006.06.020Suche in Google Scholar PubMed
6. Supuran, C. T., Casini, A., Mastrolorenzo, A. and Scozzafava, A.: COX-2 selective inhibitors, carbonic anhydrase inhibition and anticancer properties of sulfonamides belonging to this class of pharmacological agents. Mini-Rev. Med. Chem.4 (2004) 625–632. DOI:Org 10.2174/1389557043403792.Suche in Google Scholar PubMed
7. Kivela, A. J., Kivela, J., Saarnio, J. and Parkkila, S.: Carbonic anhydrases in normal gastrointestinal tract and gastrointestinal tumors. World J. Gastroenterol.11 (2005) 155–163.10.3748/wjg.v11.i2.155Suche in Google Scholar PubMed PubMed Central
8. Scozzafava, A., Owa, T., Mastrolorenzo, A. and Supuran, C. T.: Anticancer and antiviral sulfonamides. Curr. Med. Chem.10 (2003) 925–953. DOI:Org 10.2174/0929867033457647.Suche in Google Scholar PubMed
9. Supuran, C. T.: Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug. Discov.7 (2008) 168–181. DOI: 10.1038/nrd.2467Suche in Google Scholar
10. Supuran, C. T., Scozzafava, A.: Carbonic anhydrases as targets for medicinal chemistry. Bioorg. Med. Chem.15 (2007) 4336–4350. DOI: 10.1016/j.bmc.2007.04.020Suche in Google Scholar PubMed
11. Tandon, V. K., Yadav, D. B., Maurya, H. K., Chaturvedi, A. K. and Shukla, P. K.: Design, synthesis, and biological evaluation of 1,2,3-trisubstituted-1,4-dihydrobenzo [g] quinoxaline-5,10-diones and related compounds as antifungal and antibacterial agents. Bioorg. Med. Chem.14 (2006) 6120–6126. DOI: 10.1016/j.bmc.2006.04.029Suche in Google Scholar
12. Sehlstedt, S., Aich, P., Bergman, J. et al.: Interactions of the antiviral quinoxaline derivative 9-OH-B220(2,3-dimethyl-6-(dimethylaminoethyl)-9-hydroxy-6H-indolo-[2,3-b]quinoxa-line) with duplex and triplex forms of synthetic DNA and RNA. J. Mol. Biol.278 (1) (1998 Apr 24) 31–56. DOI: 10.1006/jmbi.1998.1670Suche in Google Scholar
13. Carta, A., Loriga, M., Paglietti, G. et al.: Synthesis, anti-mycobacterial, antitrichomonas and anti-candida in-vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline 1,4-dioxides. Eur. J. Med. Chem.39 (2004) 195–203. DOI: 10.1016/j.ejmech.2003.11.008Suche in Google Scholar
14. Fisher, M. H., Lusi, A. and Egerton, J. R.: Anthelmintic dihydroquinoxalino[2,3-b]quinoxalines. Eur. J. Med. Chem.66 (1997) 1349–1352. DOI: 10.1016/S0040-4039(97)00096-8Suche in Google Scholar
15. Budakoti, A., Bhat, A. R. and Azam, A.: Synthesis of new 2-(5-substituted-3-phenyl-2-pyrazolinyl)-1,3-thiazolino[5,4-b] quinoxaline derivatives and evaluation of their antiamoebic activity. Eur. J. Med. Chem.44 (2009) 1317–1325. DOI: 10.1016/j.ejmech.2009.02.002Suche in Google Scholar
16. L’Carta, A., Loriga, M., Paglietti, G. et al.: Synthesis, anti-mycobacterial, antitrichomonas and anti-candida in-vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline 1,4-dioxides. Eur. J. Med. Chem.39 (2004) 195. DOI: 10.1016/j.ejmech.2003.11.008Suche in Google Scholar
17. Fisher, M. H., Lusi, A. and Egerton, J. R.: Anthelmintic dihydroquinoxalino[2,3-b]quinoxalines. J. Pharm. Sci.66 (1977) 1349. DOI: 10.1002/jps.2600660942Suche in Google Scholar
18. Budakoti, A., Bhat, A. R. and AzamA.: Synthesis of new 2-(5-substituted-3-phenyl-2-pyrazolinyl)-1,3-thiazolino[5,4-b] quinoxaline derivatives and evaluation of their antiamoebic activity. Eur. J. Med. Chem.44 (2009) 1317. DOI: 10.1016/j.ejmech.2008.02.002Suche in Google Scholar
19. Levitzki, A.: Protein tyrosine jinase inhibitors as noveltherapeutic agents. Pharmacol. Ther.82 (1999) 231; 267 (29) (1992) 20638–20647.10.1016/S0163-7258(98)00066-7Suche in Google Scholar
20. Levitzki, A.: Tyrosine kinases as targets for cancer therapy. European journal of cancer38 (2002) 511. DOI: 10.1016/S0959-8049(02)80598-6Suche in Google Scholar
21. Bogoyevitch, M. A. and Fairlie, D. P.: A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding. Drug Discovery Today12 (2007) 622. DOI: 10.1016/j.drudis.2007.06.008Suche in Google Scholar
22. Prudent, R. and Cochet, C.: New protein kinase CK2 inhibitors: jumping out of the catalytic box. Chem. Biol.16 (2009) 112. DOI: 10.1016/j.chembiol.2009.01.004Suche in Google Scholar
23. Findlay, Practical physical Chemistry6th(ed.), Longmans Pub. (1936) 92.Suche in Google Scholar
24. Hampson, J.W. and Cornell, D.G.: Surface-tension Properties of Some Poly dispersed Alkyl-Substituted polyoxy-ethylated Phenyl SulfonamidesJ. Am. Oil Chem. Soc.73 (1996) 891. DOI: 10.1007/s11743-007-1041-7Suche in Google Scholar
25. Takeshita, T., Wakebe, I. and Maeda, S.: Synthesis of EDTA-monoalkyl ester chelates and evaluation of the surface active properties. J. Am. Oil Chem. Soc.57 (1980) 430. DOI: 10.1007/s11743-005-344-4Suche in Google Scholar
26. Rosen, M. J.: Surfactants and interfacial phenomena, John Wiley and Sons Inc.New York (1987) 72.Suche in Google Scholar
27. Mohammed, A. S. and Magdi, M. B. A.: Synthesis and Surface Properties of Some Dyestuff esters. Materials Sic. Res. India1 (2003) 59. DOI: 10.1007/s11192-008-2083-ySuche in Google Scholar
28. Barry, B.W. and El-Eini, D.I.: Surface properties and Micelle Formation of Long-chain Polyoxyethylene Nonionic Surfactants. J. Colloid Interface Sci.54 (1976) 339. DOI: 10.1016/0021-9797(76)90318-0Suche in Google Scholar
29. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R.: New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening, JNCI J. Natl. Cancer Inst82 (13) (1990) 1107. DOI: 10.1093/jnci/82.13.1107Suche in Google Scholar PubMed
30. Supuran, C. T., Casini, A., Mastrolorenzo, A. et al.: COX-2 selective inhibitors, carbonic anhydrase inhibition and anticancer properties of sulfonamides belonging to this class of pharmacological agents. Mini-Rev. Med. Chem.4 (2004) 625. DOI: 10.2174/1389557043403792Suche in Google Scholar PubMed
31. Badawi, A. M., Mohamed, M. A., Mohamed, M. Z. and Khowdairy, M. M.: Surface and antitumor activity of some novel metal-based cationic surfactants. J. Can. Res. Ther.3 (2007) 198. DOI: 10.4103/0973-1482.38994Suche in Google Scholar PubMed
32. Menter, D. G., Sabichi, A. L. and Lippman, S. M.: Selenium effects on prostate cell growth. Cancer Epidemiol. Biomarkers Prev.9 (2000) 1171. DOI: 10.1002/mnfr.200800103Suche in Google Scholar PubMed PubMed Central
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Inactivation of Human Norovirus by Common Domestic Laundry Procedures
- Dispersion of Bioactive Glass using Cetyltrimethylammonium Bromide
- Novel/“Green” Surfactants
- Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
- Synthesis and Antitumor and Surface Activity of Novel Tetrachloro Metallate Complexes of Sulfaquinoxaline with Co(II), Cu(II), or Sn(II) Chlorides
- Micellar Chemistry
- Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature
- Physical Chemistry
- Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants
- Influence of Alcohols on Micellar and Release Balances of Cationic Surfactant – Carbethopendecinium Bromide (Septonex)
- Synthesis
- Synthesis and Characterization of Series of Soft-Template Agents for Mesoporous Materials
- The Role of Surface Active Agents in Sulfonation of Double Bonds
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Inactivation of Human Norovirus by Common Domestic Laundry Procedures
- Dispersion of Bioactive Glass using Cetyltrimethylammonium Bromide
- Novel/“Green” Surfactants
- Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
- Synthesis and Antitumor and Surface Activity of Novel Tetrachloro Metallate Complexes of Sulfaquinoxaline with Co(II), Cu(II), or Sn(II) Chlorides
- Micellar Chemistry
- Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature
- Physical Chemistry
- Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants
- Influence of Alcohols on Micellar and Release Balances of Cationic Surfactant – Carbethopendecinium Bromide (Septonex)
- Synthesis
- Synthesis and Characterization of Series of Soft-Template Agents for Mesoporous Materials
- The Role of Surface Active Agents in Sulfonation of Double Bonds