Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
-
Jorge Aburto
, Daniel M. Márquez , Juan C. Navarro und Rafael Martínez-Palou
Abstract
Water/oil emulsions are formed in oil wells due to the presence of natural surfactants. As water/oil phase separation is necessary before oil refining, demulsifiers are used to break water/oil emulsions. In this work, environmentally friendly ionic surface-active choline carboxylates were synthesized from anionic exchange involving choline chloride under microwave dielectric heating. Microwave irradiation was also employed as a fast method for following the kinetics of the demulsification process with the synthesized demulsifiers. Choline palmitate showed the best performance as demulsifier.
Kurzfassung
Wasser/Öl-Emulsionen werden in Ölquellen aufgrund anwesender natürlicher Tenside gebildet. Da vor der Mineralölverarbeitung eine Phasentrennung von Wasser und Rohöl erforderlich ist, werden die Wasser/Öl-Emulsionen mit sog. Spaltern gebrochen. In dieser Arbeit wurden umweltfreundliche ionische oberflächenaktive Cholincarboxylate aus anionischem Austausch von Cholinchlorid bei dielektrischer Erwärmung mittels Mikrowellen synthetisiert. Die Mikrowellenbestrahlung wurde auch als schnelles Verfahren zur Verfolgung der Kinetik des Demulgierprozesses mit den synthetisierten Demulgatoren eingesetzt. Cholinpalmitat zeigte die beste Leistung als Demulgator.
References
1. Schramm, L. L.: In Emulsion Fundamentals and Applications in the Petroleum Industry. Schramm, L. L. (Ed.) American Chemical Society, Washington DC, 1992, pp. 1–45. DOI: 10.1021/ba-1992-0231Suche in Google Scholar
2. Kokal, S.: Petroleum Engineering Handbook: General Engineering, FanchiJ.R. (Ed.). Society of Petroleum Engineering, Richardson, Texas, 2006, pp. 533–570.Suche in Google Scholar
3. Kokal, S.: Crude-oil Emulsions: A-State-of-the-Art Review, SPE Prod. Facil.2005, February, 5–13.Suche in Google Scholar
4. Zaki, N. N., Carbonell, R. G. and Kilpatrick, P. K. A.: Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide, Ind. Eng. Chem. Res.42 (2003) 6661. DOI: 10.1021/ie0303597Suche in Google Scholar
5. Feng, X., Xu, Z. and Masliyah, J.: Biodegradable Polymer for Demulsification of Water-in-Bitumen Emulsions. Energy Fuels23 (2009) 451. DOI: 10.1021/ef800825nSuche in Google Scholar
6. Peng, J., Liu, Q., Xu, Z. and Masliyah, J.: Novel Magnetic Demulsifier for Water Removal from Diluted Bitumen Emulsion. Energy Fuels26 (2012) 2705. DOI: 10.1021/ef2014259Suche in Google Scholar
7. Rogers, R. D. and Seddon, K. R.: Ionic Liquids: Industrial Applications of Green Chemistry. American Chemical Society, Washington DC., 2002. DOI: 10.1007/978-94-010-0127-4Suche in Google Scholar
8. Martínez-Palou, R. and Flores, P.: Perspectives of Ionic Liquids for Clean Oilfield Technologies, Kokorin, A. (Ed.), in: Ionic Liquids. Theory, Properties and New Approaches, INTECH, 2011, pp. 567–630. DOI: 10.5772/14529Suche in Google Scholar
9. Martínez-Palou, R.: Química en Microondas. CEM Publishing: Mattews, NC, 2006 (E-book).Suche in Google Scholar
10. Guzmán, D., Flores, P. and Martínez-Palou, R.: Ionic Liquids as Demulsifiers of Water-in-Crude Oil Emulsions: Study of the Microwave Effect. Energy Fuels24 (2010) 3610. DOI: 10.1021/ef100232fSuche in Google Scholar
11. Goldszal, A. and Bourrel, M.: Demulsification of Crude Oil Emulsions: Correlation to Microemulsion Phase Behavior. Ind. Eng. Chem. Res.39 (2000) 2746. DOI: 10.1021/ef100232fSuche in Google Scholar
12. Web page: http://www.cem.com.Suche in Google Scholar
13. Shiraishi, Y., Hirai, T. and Komasawa, I.: Identification of desulfurization products in the photochemical desulfurization process for benzothiophenes and dibenzothiophenes from light oil using an organic two-phase extraction system. Ing. Eng. Chem. Res.38 (1999) 3300. DOI: 10.1021/ie990134pSuche in Google Scholar
14. Klein, R., Touraud, D., and Kunz, W.: Choline carboxylate surfactants; biocompatible and highly soluble in water. Green Chem.10 (2008) 433. DOI: 10.1039/b718466bSuche in Google Scholar
15. Wolf, N. O.: U.S. Patent 4582629, 1986.Suche in Google Scholar
16. Xia, L. X., Lu, S. W. and Cao, G. Y.: Stability and demulsification of emulsions stabilized by asphaltenes or resins. J. Colloid Interface Sci.271 (2004) 504. DOI: 10.1016/j.jcis.2003.11.027Suche in Google Scholar
17. Nour, A. H. and Yunus, R. M. A.: Stability and Demulsification of Water-in-Crude Oil (w/o) Emulsions Via Microwave Heating. J Appl. Sci.6 (2006) 1698. DOI: 10.3923/jas.2006.1698.1702Suche in Google Scholar
18. Nour, A. H. and Yunus, R. M. A.: Continuous Microwave Heating of Water-in-Oil Emulsions: An Experimental Study. J. Appl. Sci.6 (2006) 1868. DOI: 10.3923/jas.2006.1868.1872Suche in Google Scholar
19. Nour, A. H. and Yunus, R. M. A.: Comparative Study on Emulsion Demulsification by Microwave Radiation and Conventional Heating. J Appl. Sci.6 (2006) 2307. DOI: 10.3923/jas.2006.2307.2311Suche in Google Scholar
20. Nour, A. H., Pang, S. F., Nour, A. H. and Omer, M. S.: Demulsification of Water-in-Crude Oil (W/O) Emulsion by using Microwave Radiation. J Appl. Sci.10 (2010) 2935. DOI: 10.3923/jas.2010.2935.2939Suche in Google Scholar
21. Anisa, A. N. I., Nour, A. H. and Nour, A. H.: Destabilization of Heavy and Light Crude Oil Emulsions via Microwave Heating Technology: An Optimization Study. J Appl. Sci.11 (2011) 2898. DOI: 10.3923/jas.2011.2898.2906Suche in Google Scholar
22. Fortuny, M., Oliveira, C. B., Melo, R. L., Nele, M., Coutinho, R. C. and Santos, A. F.: Effect of Salinity, Temperature, Water Content, and pH on the Microwave Demulsification of Crude Oil Emulsions. Energy Fuels21 (2007) 1358. DOI: 10.1021/ef0603885Suche in Google Scholar
23. Lemos, R. C. B.da Silva, E. B., dos Santos, A., Guimaraes, R. C. L., Ferreira, B. M. S., Guarnieri, R. A., Dariva, C., Franceschi, E., Santos, A. F. and Fortuny, M.: Demulsification of Water-in-Crude Oil Emulsions Using Ionic Liquids and Microwave Irradiation. Energy Fuels24 (2010) 4439. DOI: 10.1021/ef100425vSuche in Google Scholar
24. de la Hoz, A., Diaz-Ortiz, A. and Moreno, A.: Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev.34 (2005) 164. DOI: 10.1039/b411438 hSuche in Google Scholar
25. Perreux, L. and Loupy, A.: A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron57 (2001) 9199. DOI: 10.1016/S0040-4020(01)00905-XSuche in Google Scholar
26. Perreux, L. and Loupy, A.: In: Loupy, A. (Ed.) Microwaves in Organic Synthesis, 2nd Ed., Wiley-VCH, Weinheim, Germany, 2006, pp. 134–218. DOI: 10.1002/9783527619559.ch4Suche in Google Scholar
27. Kappe, C. O.: Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology. Acc. Chem. Res.46 (2013) 1579. DOI: 10.1021/ar300318cSuche in Google Scholar PubMed
28. Cerón-Camacho, R., Aburto, J., Flores, E. A., Montiel, L. E. and Martínez-Palou, R.: Efficient Microwave-Assisted Synthesis of Ionic Esterified Amino Acids. Molecules16 (2011) 8733. DOI: 10.3390/molecules16108733Suche in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Inactivation of Human Norovirus by Common Domestic Laundry Procedures
- Dispersion of Bioactive Glass using Cetyltrimethylammonium Bromide
- Novel/“Green” Surfactants
- Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
- Synthesis and Antitumor and Surface Activity of Novel Tetrachloro Metallate Complexes of Sulfaquinoxaline with Co(II), Cu(II), or Sn(II) Chlorides
- Micellar Chemistry
- Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature
- Physical Chemistry
- Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants
- Influence of Alcohols on Micellar and Release Balances of Cationic Surfactant – Carbethopendecinium Bromide (Septonex)
- Synthesis
- Synthesis and Characterization of Series of Soft-Template Agents for Mesoporous Materials
- The Role of Surface Active Agents in Sulfonation of Double Bonds
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Inactivation of Human Norovirus by Common Domestic Laundry Procedures
- Dispersion of Bioactive Glass using Cetyltrimethylammonium Bromide
- Novel/“Green” Surfactants
- Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
- Synthesis and Antitumor and Surface Activity of Novel Tetrachloro Metallate Complexes of Sulfaquinoxaline with Co(II), Cu(II), or Sn(II) Chlorides
- Micellar Chemistry
- Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature
- Physical Chemistry
- Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants
- Influence of Alcohols on Micellar and Release Balances of Cationic Surfactant – Carbethopendecinium Bromide (Septonex)
- Synthesis
- Synthesis and Characterization of Series of Soft-Template Agents for Mesoporous Materials
- The Role of Surface Active Agents in Sulfonation of Double Bonds