Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature
-
Susanta Malik
, Aniruddha Ghosh , Kakali Mukherjee and Bidyut Saha
Abstract
In aqueous acidic media, picolinic acid, 2,3-dipicolinic acid, and 2,6-dipicolinic acid promoted Cr(VI) oxidation of lactose to lactobionic acid has been carried out at room temperature. A possible reaction mechanism, which is based on the kinetic results and the product analysis, has been proposed. The anionic surfactant sodium dodecyl sulphate (SDS) and nonionic surfactant Triton-X-100 (TX-100) accelerate the process while the cationic surfactant N-cetylpyridinium chloride (CPC) retards the reaction.
Kurzfassung
Die von Picolinsäure, 2,3-Dipicolinsäure und von 2,6-Dipicolinsäure im wässrigen, saurem Medium begünstigte Cr(VI)-Oxidation von Laktose zur Laktobionsäure wurde bei Raum temperatur durchgeführt. Es wurde ein möglicher Reaktions mechanismus auf Basis der kinetischen Ergebnisse und der Produktanalyse vorgeschlagen. Das anionische Tensid Natriumdodecylsulfat (SDS) und das nichtionische Tensid Triton-X-100 (TX-100) beschleunigen den Vorgang, während das kationische Tensid N-Cetylpyridiniumchlorid (CPC) die Reaktion verzögert.
References
1. Gutierreza, L. F., Hamoudi, S. and Belkacemi, K.: Selective production of lactobionic acid by aerobic oxidation of lactose over gold crystallites supported on mesoporous silica; Appl. Catal. A402 (2011) 94–103. DOI: 10.1016/j.apcata.2011.05.034Search in Google Scholar
2. Nordkvist, M., Nielsen, P. M. and Villadsen, J.: Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase: Kinetics and operational stability; Biotechnol. Bioeng.97 (2007) 694–707. DOI: 10.1002/bit.21273Search in Google Scholar PubMed
3. Katre, Y., Singh, M., SinghA. K.: Kinetics and mechanism of oxidation reaction of lactose by N-Bromophthalimide: Micelles used as a catalyst. Colloid J.74 (2012) 391–400. DOI: 10.1134/S1061933X12030167Search in Google Scholar
4. Saha, R., Ghosh, A. and Saha, B.: Combination of best promoter and micellar catalyst for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media at room temperature. Spectrochim. Acta Part A124 (2014) 130–137. DOI: 10.1016/j.saa.2013.12.101Search in Google Scholar PubMed
5. Saha, R., Nandi, R. and Saha, B.: Sources and toxicity of hexavalent chromium. J. Coord. Chem.64 (2011) 1782–1806. DOI: 10.1080/00958972.2011.583646Search in Google Scholar
6. Saha, B. and Orvig, C.: Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev.254 (2010) 2959–2972. DOI: 10.1016/j.ccr.2010.06.005Search in Google Scholar
7. Sundaram, S. P. and Raghavan, S.: Chromium-VI Reagents: Synthetic Applications. Springer. 2011. DOI: 10.1007/978-3-642-20817-1Search in Google Scholar
8. Saha, R., Ghosh, A. and Saha, B.: Micellar catalysis on 1,10-phenanthroline promoted hexavalent chromium oxidation of ethanol. J. Coord. Chem.64 (2011) 3729–3739. DOI: 10.1080/00958972.2011.630463Search in Google Scholar
9. Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S. K. and Saha, B.: Combination of best promoter and catalyst for hypervalent chromium oxidation of l-sorbose to lactone of C5 aldonic acid in aqueous media at room temperature. J. Mol. Liq.179 (2013) 1–6. DOI: 10.1016/j.molliq.2012.12.012Search in Google Scholar
10. Katre, Y. R., Singh, M., Patil, S. and Singh, A. K.: Effect of cationic micellar aggregates on the kinetics of dextrose oxidation by N-Bromophthalimide. J. Dispersion Sci. Technol.29 (2008) 1412–1420. DOI: 10.1080/01932690802313410Search in Google Scholar
11. Singh, A. K., Neigi, R., Katre, Y. R. and Singh, S. P.: Mechanistic study of novel oxidation of paracetamol by chloramine-T using micro-amount of chloro-complex of Ir(III) as a homogeneous catalyst in acidic medium. J. Mol. Catal. A302 (2009) 36–42. DOI: 10.1016/j.molcata.2008.11.041Search in Google Scholar
12. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar Catalysis of Chromic Acid Oxidation of Methionine to Industrially Important Methylthiol in Aqueous Media at Room Temperature. Tenside Surf. Det.50 (2013) 94–98. DOI: 10.3139/113.110237Search in Google Scholar
13. Banerji, J., Kótai, L., Sharma, P. K. and Banerji, K. K.: Kinetics and mechanism of the oxidation of substituted benzaldehyde with bis(pyridine) silver permanganate. Eur. Chem. Bull.1 (2012) 135–140.Search in Google Scholar
14. Ghosh, A., Saha, R., Mukhejee, K., Ghosh, S. K., Bhattacharyya, S. S., Laskar, S. and Saha, B.: Selection of suitable combination of nonfunctional micellar catalyst and heteroaromatic nitrogen base as promoter for chromic acid oxidation of ethanol to acetaldehyde in aqueous medium at room temperature. Int. J. Chem. Kinet.45 (2013) 175–186. DOI: 10.1002/kin.20754Search in Google Scholar
15. Figgis, B. N.: Introduction to ligand fields. Wiley Eastern Limited, New Delhi, India (1966), p. 222.Search in Google Scholar
16. Khan, Z. and Ud-Din, K.: One-step three-electron oxidation of tartaric and glyoxylic acids by chromium(VI) in the absence and presence of manganese(II). Transition Met. Chem.27 (2002) 617–624. DOI: 10.1023/A:1019819316240Search in Google Scholar
17. Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S. K. and Saha, B.: Efficient combination of promoter and catalyst for chromic acid oxidation of propan-2-ol to acetone in aqueous acid media at room temperature. Spectrochim. Acta, Part A.101 (2013) 294–305. DOI: 10.1016/j.saa.2012.09.095Search in Google Scholar PubMed
18. Ghosh, A., Saha, R., Mukhejee, K., Ghosh, S. K., Bhattacharyya, S. S., Laskar, S. and Saha, B.: Selection of suitable combination of nonfunctional micellar catalyst and heteroaromatic nitrogen base as promoter for chromic acid oxidation of ethanol to acetaldehyde in aqueous medium at room temperature. Int. J. Chem. Kinet.45 (2013) 175–186. DOI: 10.1002/kin.20754Search in Google Scholar
19. Medien, H. A. A.: Kinetics of Oxidation of Benzaldehydes by Quinolinium Dichromate. Naturforsch. Z.58b (2003) 1201–1205.Search in Google Scholar
20. Saha, R., Ghosh, A., Sar, P., Saha, I., Ghosh, S. K., Mukherjee, K. and Saha, B.: Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of D-galactose to D-galactonic acid in aqueous media at room temperature. Spectrochim. Acta Part A116 (2013) 524–531. DOI: 10.1016/j.saa.2013.07.065Search in Google Scholar PubMed
21. Bakshi, M. S.: Cetylpyridinium chloride-tetradecyltrimethylammonium bromide mixed micelles in ethylene glycol-water and diethylene glycol-water mixtures. J. Chem. Soc., Faraday Trans.93 (1997) 4005–4008. DOI: 10.1039/A703310ISearch in Google Scholar
22. Bakshi, M. S., Kaur, N. and Mahajan, R. K.: A comparative behavior of photophysical properties of Pluronic F127 and Triton X-100 with conventional zwitterionic and anionic surfactants. J. Photochem. Photobiol. A183 (2006) 146–153. DOI: 10.1016/j.jphotochem.2006.03.008Search in Google Scholar
23. Bakshi, M. S.: Micelle formation by sodium dodecyl sulfate in water-additive systems. Bull. Chem. Soc. Jpn.69 (1996) 2723–2729. DOI: 10.1246/bcsj.69.2723Search in Google Scholar
24. Ruiz, C. C., Molina-Bolívar, J. A. and Aguiar, J.: Thermodynamic and structural studies of Triton X-100 micelles in ethylene glycol-water mixed solvents. Langmuir17 (2001) 6831–6840. DOI: 10.1021/la010529pSearch in Google Scholar
25. Khullar, P., Singh, V., Mahal, A., Kumar, H., Kaur, G. and Bakshi, M. S.: Block Copolymer Micelles as Nanoreactors for Self-Assembled Morphologies of Gold Nanoparticles. J. Phys. Chem. B117 (2013) 3028–3039. DOI: 10.1021/jp310507 mSearch in Google Scholar
26. Ghosh, A., Saha, R., Mukherjee, K., Ghosh, S. K., Sar, P., Malik, S. and Saha, B.: Choice of suitable micellar catalyst for 2,2′-bipyridine promoted chromic acid oxidation of glycerol to glyceraldehyde in aqueous media at room temperature. Res. Chem. Intermed. DOI: 10.1007/s11164-013-1415-6Search in Google Scholar
27. Ghosh, S. K., Basu, A., Saha, R., Nandi, R. and Saha, B.: Kinetics and mechanism of 2,2′-bipyridyl catalyzed chromium(VI) oxidation of formic acid in the presence and absence of surfactants; Current Inorg. Chem.2 (2012) 86–91. DOI: 10.2174/1877944111202010086Search in Google Scholar
28. Ghosh, S. K., Saha, R., Mukherjee, K., Ghosh, A., Bhattacharyya, S. S. and Saha, B.: Micellar catalysis on 1,10-Phenanthroline promoted chromic acid oxidation of propanol in aqueous media. J. Kor. Chem. Soc.56 (2012) 164–168. DOI: 10.5012/jkcs.2012.56.1.164Search in Google Scholar
29. Saha, R., Ghosh, A. and Saha, B.: Kinetics of micellar catalysis on oxidation of p-anisaldehyde to p-anisic acid in aqueous medium at room temperature. Chem. Eng. Sci.99 (2013) 23–27. DOI: 10.1016/j.ces.2013.05.043Search in Google Scholar
30. Saha, R., Ghosh, A. and Saha, B.: Micellar catalysis on 1, 10-phenanthroline promoted hexavalent chromium oxidation of ethanol. J. Coord. Chem.64 (2011) 3729–3739. DOI: 10.1080/00958972.2011.630463Search in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Inactivation of Human Norovirus by Common Domestic Laundry Procedures
- Dispersion of Bioactive Glass using Cetyltrimethylammonium Bromide
- Novel/“Green” Surfactants
- Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
- Synthesis and Antitumor and Surface Activity of Novel Tetrachloro Metallate Complexes of Sulfaquinoxaline with Co(II), Cu(II), or Sn(II) Chlorides
- Micellar Chemistry
- Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature
- Physical Chemistry
- Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants
- Influence of Alcohols on Micellar and Release Balances of Cationic Surfactant – Carbethopendecinium Bromide (Septonex)
- Synthesis
- Synthesis and Characterization of Series of Soft-Template Agents for Mesoporous Materials
- The Role of Surface Active Agents in Sulfonation of Double Bonds
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Inactivation of Human Norovirus by Common Domestic Laundry Procedures
- Dispersion of Bioactive Glass using Cetyltrimethylammonium Bromide
- Novel/“Green” Surfactants
- Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
- Synthesis and Antitumor and Surface Activity of Novel Tetrachloro Metallate Complexes of Sulfaquinoxaline with Co(II), Cu(II), or Sn(II) Chlorides
- Micellar Chemistry
- Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature
- Physical Chemistry
- Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants
- Influence of Alcohols on Micellar and Release Balances of Cationic Surfactant – Carbethopendecinium Bromide (Septonex)
- Synthesis
- Synthesis and Characterization of Series of Soft-Template Agents for Mesoporous Materials
- The Role of Surface Active Agents in Sulfonation of Double Bonds