Startseite Removal of Triphenylmethane Dye from Aqueous Solution by Carbonaceous Adsorbent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Removal of Triphenylmethane Dye from Aqueous Solution by Carbonaceous Adsorbent

  • S. Alam , F. Mabood , M. Sadiq , Noor-ul-Amin und F. K. Bangash
Veröffentlicht/Copyright: 11. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Removal of acid blue 1 from aqueous solution on activated carbon produced from Salvadora oleoides was investigated. The samples were characterized by BET surface area, BJH pore volume and pore diameter, XRD, SEM, EDS and FTIR analysis. The surfaces contain functional groups like ketones and hydroxyl which disappeared at high activation temperature; relatively high amount of carbon w.r.t. oxygen was found with the increase in activation temperature; the increase in surface area and development of porous structures showed a positive effect on the adsorption capacity. Adsorption of the dye on carbon at 10 and 45°C showed that the first order, Bangham and Elovich and parabolic diffusion equations apply to the kinetic data. The adsorption rate increased with the temperature and with thermal activation of the sample. Thermodynamic parameters like ΔE, ΔH, ΔS and ΔG were calculated from the kinetic data. The negative values of ΔS reflect decrease in the disorder of the system at the solid-solution interface during adsorption. Gibbs free energy (ΔG), which represents the driving force for the affinity of dye for the carbon, increased with the increase in activation temperature.

Kurzfassung

Es wurde die Entfernung von Patentblau V (Acid Blue 1) aus wässriger Lösung an aktiviertem, aus Salvadora oleoides hergestelltem Kohlenstoff untersucht. Die Proben wurde mittels BET-Oberflächenmessung, BJH-Porenvolumen- und BJH-Porendurchmesser-Bestimmung charakterisiert. Des Weiteren wurden die Proben mittels XRD, SEM, EDS und FTIR analysiert. Die Oberflächen enthalten funktionale Gruppen wie Keto- und Hydroxylgruppen, die bei hoher Aktivierungtemperatur verschwanden. Es wurden relativ große Kohlenstoffmengen (bezogen auf Sauerstoff) mit steigender Aktivierungsenergie gefunden. Die Zunahme der Oberfläche und die Entstehung poröser Strukturen zeigten einen positiven Effekt auf die Adsorptionsvermögen. Die Adsorption des Farbstoffs auf der Kohle bei 10°C und 45°C zeigten, dass die Modelle Erster Ordnung, die Bandham- und Elovich-Modelle und die parabolischen Diffusions-Gleichungen auf die kinetischen Daten angewendet werden können. Die Adsorptionsgeschwindigkeit nahm mit der Temperatur und mit der thermischen Aktivierung der Probe zu. Die thermodynamischen Parameter wie ΔE, ΔH, ΔS and ΔG wurden aus den kinetischen Daten berechnet. Die negativen Werte von ΔS geben eine Abnahme der Unordnung des Systeme an der Fest-Flüssig-Grenzfläche während der Adsorption wieder. Die freie Gibbs-Energie (ΔG), die die Antriebskraft für die Affinität des Farbstoffes zum Kohlenstoff ist, nimmt mit dem Anstieg der Aktivierungsenergie zu.


Dr. Sultan Alam, Department of Chemistry, University of Malakand, Chakdara, Dir (L), Pakistan. E-Mail:

Dr. Sultan Alam is Assistant Professor in Physical Chemistry, University of Malakand, at Chakdara, Dir (L), Pakistan. He received his M.Sc. in 1996 and Ph.D. in 2008 from Institute of Chemical Sciences, University of Peshawar. His research interest includes, conversion of low cost precursors into activated carbon like agricultural waste material, fast growing wood and animal bones, regeneration of industrial spent carbon, characterization of adsorbents by pH, moisture content, ash content, surface area (BET, DR, BJH, and Langmuir), pore size distribution, FTIR, XRD, SEM and EDS, surface chemistry at solid-liquid interface i.e. Activated carbon, Clays and Soil, removal of organic and in-organic pollutants from aqueous solutions by active adsorbents like activated carbon, clays and soil, breakthrough technique for the utilization of low cost adsorbents into industrial effluents treatments. Monitoring of drinking water quality/industrial effluents and its impacts on human life, exploration of soil contaminants, quantification of nutrients in the indigenous medicinal plants and its impact on the functional regulation of human body activities, determination of metals in the commercially available edible herbs and its therapeutic value, exploration of nutritional status of plants habitat and investigation of food contaminants.

Dr. Muhammad Sadiq received his M.Sc (Chemistry) in 2002 from University of Peshawar. He got his M. Phil and PhD degree in Physical Chemistry in 2005 and 2009, respectively, from National Center of Excellence in Physical Chemistry, University of Peshawar. He went to Uppsala University, Sweden in 2008 for research project. At present he is working as assistant professor in Department of Chemistry, University of Malakand. His research work focuses on homogeneous, heterogeneous catalysis, photo catalysis, mechanistic studies of catalytic reactions, various batch reactors design, and partial oxidation reaction in both gas and liquid phase and reduction of NOx by metal oxide. Activated carbon and its characterization for pollution control prepared from agricultural waste material.

Dr. Fazal Mabood is Assistant Professor in Analytical Chemistry, University of Malakand, at Chakdara, Dir (L), Pakistan. He received M.Sc. in Chemistry in 2002 and Ph.D. in Analytical Chemistry in 2008. His field of interest is the determination and separation of polyaromatic hydrocarbons into petroleum products, analysis and quality control of petrochemicals products, waste polymers recycling into valuable chemicals, analysis and quality control of environnemental samples and method development for Pharmaceutical products.

Dr. Fazlullah Khan Bangash is Professor in Physical Chemistry, University of Peshawar. His research interest includes characterization of adsorbents, water pollution and surface chemistry at the solid liquid interface.


References

1. Vaidya, A. A. and Datye, K. V.: Colorate.14 (1982) 3.Suche in Google Scholar

2. Safarik, I. and Safarikova, M.: Wat. Res.36 (2002) 196. 10.1016/S0043-1354(01)00243-3Suche in Google Scholar

3. Meshko, V., Markovska, L., Mincheva, M. and Rodrigues, A. E.: Wat. Res.35 (2001) 3357. 10.1016/S0043-1354(01)00056-2Suche in Google Scholar

4. McKay, G., Otterburn, M. S. and Sweeney, A. G.: Wat. Res.14 (1980) 15. 10.1016/0043-1354(80)90037-8Suche in Google Scholar

5. McKay, G.: J. Chem. Technol. Biotechnol.32 (1982) 759. 10.1002/jctb.5030320712Suche in Google Scholar

6. Alam, S., Ahmad, M. and Bangash, F. K.: Tenside Surf. Det.46 (2009) 19.10.3139/113.110025Suche in Google Scholar

7. Bangash, F. K. and Alam, S.: Tenside Surf. Det.43 (2006) 299309.10.3139/113.100318Suche in Google Scholar

8. Bangash, F. K., Alam, S. and Iqbal, M.: Jour. Chem. Soc. Pak.23 (2001) 215.Suche in Google Scholar

9. Snell, D. F. and Hilton, C. L.: Encyclopedia of Industrial Chemical Analysis, Interscience Publisher, New York. 4 (1967) 431451.Suche in Google Scholar

10. Brunauer, S., Emmett, P. and Teller, E. J.: J. Am. Chem. Soc.60 (1938) 309319. 10.1021/ja01269a023Suche in Google Scholar

11. Tien, C.: Adsorption calculations and modeling. Butterworth-HeinemannWashington (1994) pp. 16.Suche in Google Scholar

12. Ismadji, S., Sudaryanto, Y., Hartono, S. B., Setiawan, L. E. K. and Ayucitra, A.: Bioresou. Technol.96 (2005) 1364. 10.1016/j.biortech.2004.11.007Suche in Google Scholar

13. Bahabendra, K., Pradhan, N. K. and Sandle, N. N.: Carbon.33 (1999) 1230.Suche in Google Scholar

14. Younas, M.: Organic Spectroscopy, Pub. AHP international, Lahore. 7176 (1998).Suche in Google Scholar

15. Ahmad, I., Khan, M. A., Ishaq, M., Shakirullah, M. and Bahader, A.: J. Eng. and Appl. Sci.23 (2004) 117.Suche in Google Scholar

16. Cooke, N. E., Fuller, O. M. and Gaikwad, R. P.: Fuel.65 (1986) 1254. 10.1016/0016-2361(86)90238-3Suche in Google Scholar

17. Nelly, J. W. and Isacoff, E. G.: Carbonaceous Adsorbents for the Treatment of Ground and Surface Water. Marcel Dekker, New York (1982).Suche in Google Scholar

18. Rook, J. J., McGuire, M. J. and Suffet, I. H.: (Eds.), Treatment of Water by Granular Activated Carbon. American Chemical Society, Washington, DC. (1983).Suche in Google Scholar

19. Laidler, K. L.: Chemical Kinetics. Mc-Graw Hill, New York (1965).Suche in Google Scholar

20. Dogan, M., Alkan, M., Turkyilmaz, A. and Ozdemir, Y.: J. Hazard. Mater.B109 (2004) 141.Suche in Google Scholar

21. Qadeer, R., Hanif, J., Saleem, M. and Afzal, M.: J. Chem. Soc. Pak.17 (1995) 82.Suche in Google Scholar

22. Aharoni, C., Sideman, S. and Hoffer, E.: J. Chem. Technol. Biotechnol.29 (1979) 404. 10.1002/jctb.503290703Suche in Google Scholar

23. Vadivelan, V. and Kumar, K. V.: J. Colloid Interf. Sci.286 (2005) 90. 10.1016/j.jcis.2005.01.007Suche in Google Scholar PubMed

24. Weber, J. W. J. and Morris, J. C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE.89 (SA2) (1963) 31.10.1061/JSEDAI.0000430Suche in Google Scholar

Received: 2010-06-17
Published Online: 2013-04-11
Published in Print: 2011-03-01

© 2011, Carl Hanser Publisher, Munich

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110114/html
Button zum nach oben scrollen