Removal of Triphenylmethane Dye from Aqueous Solution by Carbonaceous Adsorbent
-
S. Alam
Abstract
Removal of acid blue 1 from aqueous solution on activated carbon produced from Salvadora oleoides was investigated. The samples were characterized by BET surface area, BJH pore volume and pore diameter, XRD, SEM, EDS and FTIR analysis. The surfaces contain functional groups like ketones and hydroxyl which disappeared at high activation temperature; relatively high amount of carbon w.r.t. oxygen was found with the increase in activation temperature; the increase in surface area and development of porous structures showed a positive effect on the adsorption capacity. Adsorption of the dye on carbon at 10 and 45°C showed that the first order, Bangham and Elovich and parabolic diffusion equations apply to the kinetic data. The adsorption rate increased with the temperature and with thermal activation of the sample. Thermodynamic parameters like ΔE≠, ΔH≠, ΔS≠ and ΔG≠ were calculated from the kinetic data. The negative values of ΔS≠ reflect decrease in the disorder of the system at the solid-solution interface during adsorption. Gibbs free energy (ΔG≠), which represents the driving force for the affinity of dye for the carbon, increased with the increase in activation temperature.
Kurzfassung
Es wurde die Entfernung von Patentblau V (Acid Blue 1) aus wässriger Lösung an aktiviertem, aus Salvadora oleoides hergestelltem Kohlenstoff untersucht. Die Proben wurde mittels BET-Oberflächenmessung, BJH-Porenvolumen- und BJH-Porendurchmesser-Bestimmung charakterisiert. Des Weiteren wurden die Proben mittels XRD, SEM, EDS und FTIR analysiert. Die Oberflächen enthalten funktionale Gruppen wie Keto- und Hydroxylgruppen, die bei hoher Aktivierungtemperatur verschwanden. Es wurden relativ große Kohlenstoffmengen (bezogen auf Sauerstoff) mit steigender Aktivierungsenergie gefunden. Die Zunahme der Oberfläche und die Entstehung poröser Strukturen zeigten einen positiven Effekt auf die Adsorptionsvermögen. Die Adsorption des Farbstoffs auf der Kohle bei 10°C und 45°C zeigten, dass die Modelle Erster Ordnung, die Bandham- und Elovich-Modelle und die parabolischen Diffusions-Gleichungen auf die kinetischen Daten angewendet werden können. Die Adsorptionsgeschwindigkeit nahm mit der Temperatur und mit der thermischen Aktivierung der Probe zu. Die thermodynamischen Parameter wie ΔE≠, ΔH≠, ΔS≠ and ΔG≠ wurden aus den kinetischen Daten berechnet. Die negativen Werte von ΔS≠ geben eine Abnahme der Unordnung des Systeme an der Fest-Flüssig-Grenzfläche während der Adsorption wieder. Die freie Gibbs-Energie (ΔG≠), die die Antriebskraft für die Affinität des Farbstoffes zum Kohlenstoff ist, nimmt mit dem Anstieg der Aktivierungsenergie zu.
References
1. Vaidya, A. A. and Datye, K. V.: Colorate.14 (1982) 3.Suche in Google Scholar
2. Safarik, I. and Safarikova, M.: Wat. Res.36 (2002) 196. 10.1016/S0043-1354(01)00243-3Suche in Google Scholar
3. Meshko, V., Markovska, L., Mincheva, M. and Rodrigues, A. E.: Wat. Res.35 (2001) 3357. 10.1016/S0043-1354(01)00056-2Suche in Google Scholar
4. McKay, G., Otterburn, M. S. and Sweeney, A. G.: Wat. Res.14 (1980) 15. 10.1016/0043-1354(80)90037-8Suche in Google Scholar
5. McKay, G.: J. Chem. Technol. Biotechnol.32 (1982) 759. 10.1002/jctb.5030320712Suche in Google Scholar
6. Alam, S., Ahmad, M. and Bangash, F. K.: Tenside Surf. Det.46 (2009) 1–9.10.3139/113.110025Suche in Google Scholar
7. Bangash, F. K. and Alam, S.: Tenside Surf. Det.43 (2006) 299–309.10.3139/113.100318Suche in Google Scholar
8. Bangash, F. K., Alam, S. and Iqbal, M.: Jour. Chem. Soc. Pak.23 (2001) 215.Suche in Google Scholar
9. Snell, D. F. and Hilton, C. L.: Encyclopedia of Industrial Chemical Analysis, Interscience Publisher, New York. 4 (1967) 431–451.Suche in Google Scholar
10. Brunauer, S., Emmett, P. and Teller, E. J.: J. Am. Chem. Soc.60 (1938) 309–319. 10.1021/ja01269a023Suche in Google Scholar
11. Tien, C.: Adsorption calculations and modeling. Butterworth-HeinemannWashington (1994) pp. 16.Suche in Google Scholar
12. Ismadji, S., Sudaryanto, Y., Hartono, S. B., Setiawan, L. E. K. and Ayucitra, A.: Bioresou. Technol.96 (2005) 1364. 10.1016/j.biortech.2004.11.007Suche in Google Scholar
13. Bahabendra, K., Pradhan, N. K. and Sandle, N. N.: Carbon.33 (1999) 1230.Suche in Google Scholar
14. Younas, M.: Organic Spectroscopy, Pub. AHP international, Lahore. 71–76 (1998).Suche in Google Scholar
15. Ahmad, I., Khan, M. A., Ishaq, M., Shakirullah, M. and Bahader, A.: J. Eng. and Appl. Sci.23 (2004) 117.Suche in Google Scholar
16. Cooke, N. E., Fuller, O. M. and Gaikwad, R. P.: Fuel.65 (1986) 1254. 10.1016/0016-2361(86)90238-3Suche in Google Scholar
17. Nelly, J. W. and Isacoff, E. G.: Carbonaceous Adsorbents for the Treatment of Ground and Surface Water. Marcel Dekker, New York (1982).Suche in Google Scholar
18. Rook, J. J., McGuire, M. J. and Suffet, I. H.: (Eds.), Treatment of Water by Granular Activated Carbon. American Chemical Society, Washington, DC. (1983).Suche in Google Scholar
19. Laidler, K. L.: Chemical Kinetics. Mc-Graw Hill, New York (1965).Suche in Google Scholar
20. Dogan, M., Alkan, M., Turkyilmaz, A. and Ozdemir, Y.: J. Hazard. Mater.B109 (2004) 141.Suche in Google Scholar
21. Qadeer, R., Hanif, J., Saleem, M. and Afzal, M.: J. Chem. Soc. Pak.17 (1995) 82.Suche in Google Scholar
22. Aharoni, C., Sideman, S. and Hoffer, E.: J. Chem. Technol. Biotechnol.29 (1979) 404. 10.1002/jctb.503290703Suche in Google Scholar
23. Vadivelan, V. and Kumar, K. V.: J. Colloid Interf. Sci.286 (2005) 90. 10.1016/j.jcis.2005.01.007Suche in Google Scholar PubMed
24. Weber, J. W. J. and Morris, J. C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE.89 (SA2) (1963) 31.10.1061/JSEDAI.0000430Suche in Google Scholar
© 2011, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Alkyl Polyglycoside/1-Naphthol Formulations: A Case Study of Surfactant Enhanced Oil Recovery
- 5-(3-Bromo-4-hydroxy-5-methoxyphenyl)-7,7-dimethyl-7H-indolo[1,2-a]quinolinium Perchlorate as a New Indicator for Anionic Surface Active Agents Determination
- Environmental Chemistry
- Kinetics and Adsorption Isotherms for the Removal of Tartrazine from Aqueous Solution by Coal Ash
- Removal of Triphenylmethane Dye from Aqueous Solution by Carbonaceous Adsorbent
- European Detergents Conference
- Nonequilibrium Association of Oppositely Charged Macromolecules and Amphiphiles
- Novel Surfactants
- Syntheses and Properties of New Double-tail Trisiloxane Surfactants with Both Hydrolysis Resistance and High Spreading Ability
- Synthesis of Some Novel Sulfonamide Derivatives and Investigating their Biocidal Activity in Cooling Towers
- Physical Chemistry
- Micellar Characteristics and Surface Properties of Some Sulfobetaine Surfactants
- Viscosity and Percolative Phenomena in AOT based Microemulsions
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Alkyl Polyglycoside/1-Naphthol Formulations: A Case Study of Surfactant Enhanced Oil Recovery
- 5-(3-Bromo-4-hydroxy-5-methoxyphenyl)-7,7-dimethyl-7H-indolo[1,2-a]quinolinium Perchlorate as a New Indicator for Anionic Surface Active Agents Determination
- Environmental Chemistry
- Kinetics and Adsorption Isotherms for the Removal of Tartrazine from Aqueous Solution by Coal Ash
- Removal of Triphenylmethane Dye from Aqueous Solution by Carbonaceous Adsorbent
- European Detergents Conference
- Nonequilibrium Association of Oppositely Charged Macromolecules and Amphiphiles
- Novel Surfactants
- Syntheses and Properties of New Double-tail Trisiloxane Surfactants with Both Hydrolysis Resistance and High Spreading Ability
- Synthesis of Some Novel Sulfonamide Derivatives and Investigating their Biocidal Activity in Cooling Towers
- Physical Chemistry
- Micellar Characteristics and Surface Properties of Some Sulfobetaine Surfactants
- Viscosity and Percolative Phenomena in AOT based Microemulsions