Micellar Characteristics and Surface Properties of Some Sulfobetaine Surfactants
-
N. Singh
and K. K. Ghosh
Abstract
The micellar and interfacial properties of three sulfobetaine surfactants of the type CnH2n+1N+Me2(CH2)3SO3− (n = 10; SB3-10 n = 12; SB3-12, n = 16; SB3-16) have been studied by conductometry and surface tension measurements. The critical micellar concentration (CMC), surface excess concentration (Γmax), minimum surface area per molecule of surfactant (Amin), Gibbs free energy of micellization (ΔGom), Gibbs energy of transfer (ΔGotrans), the surface pressure at CMC (πCMC) and the Gibbs energy of adsorption (ΔGoads) of these surfactants have also been determined. Effect of formamide has been studied at higher temperature conductometrically. Results show that alkyl chain length and the amount of solvent composition influences micellization and surface properties of sulfobetaines. Increment in the CMC, ΔGom and ΔGotrans, can be accounted for changes in the polarity of the bulk phase. Γmax, and πcmc decreases where as Amin increases with increase in the organic solvent. It was also observed that micellization in water-formamide mixture was even slower than in the case of ethylene glycol.
Kurzfassung
Die Eigenschaften von Mizellen und Grenzflächen von drei Sulfobetainen des Typs CnH2n+1N+Me2(CH2)3SO3− (n = 10; SB3-10, n = 12; SB3-12, n = 16; SB3-16) wurden mittels Messungen der Leitfähigkeit und der Grenzflächenspannung bestimmt. Für diese Tenside wurden die folgenden thermodynamischen Größen bestimmt: die kritische Mizellbildungkonzentration (CMC), die Oberflächenüberschusskonzentration (Γmax), der minimale Platzbedarf eines Tensidmoleküls an der Grenzfläche (Amin), die freie Gibbs-Energie der Mizellenbildung (ΔGom), die Gibbs-Energie des Transfers (ΔGotrans), der Oberflächendruck bei der CMC (πCMC) und die Gibbs-Energie der Adsorption (ΔGoads). Der Einfluss von Formamid wurde bei höheren Temperaturen mittels Messung der Leitfähigkeit bestimmt. Die Resultate zeigen, dass die Alkylkettenlänge, die Menge und Zusammensetzung des Lösemittels die Mizellenbildung und die Oberflächeneigenschaften der Sulfobetaine beeinflussen. Die Zunahme der Größen CMC, ΔGom and ΔGotrans kann als Änderungen der Polarität in der Bulkphase in Betracht gezogen werden. Γmax und πCMC nehmen ab und Amin zu bei Zunahme im Lösemittel. Es konnte ebenfalls beobachtet werden, dass die Mizellenbildung in der Wasser-Formamid-Mischung langsamer war als in Ethylenglykol.
References
1. Wang, Y., Huang, X., Li, Y., Wang, J. and Wang, Y.: Colloids Surf. A Physicochem. Eng. Asp.333 (2009) 108. 10.1016/j.colsurfa.2008.09.030Search in Google Scholar
2. Chevalier, Y., Kamenka, N., ChorroM. and Zana, R.: Langmuir12 (1996) 3225. 10.1021/la951571lSearch in Google Scholar
3. Kamenka, N., Chorro, M., Chevalier, Y., Levyand, H. and Zana, R.: Langmuir11 (1995) 4234. 10.1021/la00011a013Search in Google Scholar
4. Yoshimura, T., Ichinokawa, T., Kaji, M. and Esumi, K.: Colloids Surf. A Physicochem. Eng. Asp.213 (2006) 208. 10.1016/j.colsurfa.2005.08.023Search in Google Scholar
5. Wydro, P. and Paluch, M.: J Colloid. Interface Sci.286 (2005) 387. 10.1016/j.jcis.2004.12.039Search in Google Scholar PubMed
6. Christov, N. C., Denkov, N. D., Kralchevsky, P. A., Ananthapadmanabhan, K. P. and Lips, A.: Langmuir20 (2004) 565. 10.1021/la035717pSearch in Google Scholar PubMed
7. Danov, K. D., Kralchevesky, S. D., Kralchevesky, P. A., Ananthapadmanabhan, K. P. and Lips, A.: Langmuir20 (2004) 5445. 10.1021/la049576iSearch in Google Scholar PubMed
8. Bahera, K. and Pandey, S.: J. Colloid. Interface Sci.331 (2009) 196. 10.1016/j.jcis.2008.11.008Search in Google Scholar PubMed
9. Kuzak, M., Szpotkowski, K., Kozak, A., Zielinski, R., Wieczorek, D. and Gajda, M. J.: Radiation Physics and Chemistry78 (2009) 112. 10.1016/j.radphyschem.2009.04.029Search in Google Scholar
10. Zajac, J., Chorro, C., Lindheimer, M. and Partyka, S.: Langmuir13 (1997) 1486. 10.1021/la960926dSearch in Google Scholar
11. Sesta, B.: J. Phys. Chem.93 (1989) 7677. 10.1021/j100359a029Search in Google Scholar
12. Beber, R. C., Bunton, C., Savelli, G. and Nome, F.: Prog. Colloid. Polym. Sci.128 (2004) 249.Search in Google Scholar
13. QiL., Fang, Y., Wang, Z., Ma, N., Jiang, L. and Wang, Y.: J. Surfact. Deterg.11 (2008) 55. 10.1007/s11743-007-1054-2Search in Google Scholar
14. Bunton, C. A., Gillit, N. D., Mhala, M. M. and Moffat, J. R.: CCACAA74 (2001) 559.Search in Google Scholar
15. Lee, B. S. and Nome, F.: Langmuir163 (2000) 293.Search in Google Scholar
16. Ghosh, K. K., Pandey, A. and Roy, S.: Colloids Surf. A Physicochem. Eng. Asp.163 (2000) 293. 10.1016/S0927-7757(99)00343-XSearch in Google Scholar
17. Ferrit, M., Valle, C. and Martinez, F.: Colloids Surf. A Physicochem. Eng. Asp.345 (2009) 26. 10.1016/j.colsurfa.2009.04.034Search in Google Scholar
18. Berberich, K. A., Reinsborough, V. C., and Shaw, C. N.: J. Solution Chem.29 (2007) 1017. 10.1023/A:1005194903146Search in Google Scholar
19. Rodriguez, A., Graciani, M. M. and Moya, M. L.: Langmuir24 (2008) 12785. 10.1021/la802320sSearch in Google Scholar PubMed
20. Rodriguez, A., Graciani, M. M., Cordobes, F. and Moya, M. L.: J. Phys. Chem. B113 (2009) 7767. 10.1021/jp901457dSearch in Google Scholar PubMed
21. Priebe, J. P., Satnami, M. L., Tondo, D. W., Souza, B. S., Priebe, J. M., Micke, G. A., Costa, A. C. O., Fiedler, H. D., Bunton, C. A. and Nome, F.: J. Phys. Chem. B112 (2008) 14373. 10.1021/jp801337nSearch in Google Scholar PubMed
22. Moulins, J. R., MacNeil, J. A. and Leasist, D. G.: J. Chem. Eng. Data54 (2009) 2371. 10.1021/je800767eSearch in Google Scholar
23. Yoshimura, T., Ichinokawa, T., Kaji, M. and Esumi, K.: Colloids Surf. A Physicochem. Eng. Asp.273 (2006) 208. 10.1016/j.colsurfa.2005.08.023Search in Google Scholar
24. Graciani, M. M., Rodriguez, A., Munoz, M. and Moya, M. L.: Langmuir18 (2002) 3476. 10.1021/la0116589Search in Google Scholar
25. Graciani, M. M., Rodriguez, A., Munoz, M. and Moya, M. L.: Langmuir21 (2005) 7169.Search in Google Scholar
26. Lattes, A., Perez, E. and Lattes, I. R.: C. R. Chimie12 (2009) 45. 10.1016/j.crci.2008.06.018Search in Google Scholar
27. Zana, R., Benrraou, M. and Rueff, R.: Langmuir7 (1991) 1072. 10.1021/la00054a008Search in Google Scholar
28. Ray, G. B., Chakraborty, I., Ghosh, S. and Moulik, S. P.: J. Phys. Chem. B109 (2005) 14813. 10.1021/jp050398rSearch in Google Scholar PubMed
29. Naorem, H. and Devi, S. D.: J. Surface Sci. Technol.22 (2006) 89.Search in Google Scholar
30. Para, G., Dudra, A. H., Wilk, K. A. and Warszynski, P.: Colloids Surf. A Physicochem. Eng. Asp. (2010) doi: 10.1016/j.colsurfa.2010.02.004.Search in Google Scholar
31. Tsujii, K. and Mino, J.: J. Phys. Chem.82 (1978) 1610. 10.1021/j100503a008Search in Google Scholar
© 2011, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Alkyl Polyglycoside/1-Naphthol Formulations: A Case Study of Surfactant Enhanced Oil Recovery
- 5-(3-Bromo-4-hydroxy-5-methoxyphenyl)-7,7-dimethyl-7H-indolo[1,2-a]quinolinium Perchlorate as a New Indicator for Anionic Surface Active Agents Determination
- Environmental Chemistry
- Kinetics and Adsorption Isotherms for the Removal of Tartrazine from Aqueous Solution by Coal Ash
- Removal of Triphenylmethane Dye from Aqueous Solution by Carbonaceous Adsorbent
- European Detergents Conference
- Nonequilibrium Association of Oppositely Charged Macromolecules and Amphiphiles
- Novel Surfactants
- Syntheses and Properties of New Double-tail Trisiloxane Surfactants with Both Hydrolysis Resistance and High Spreading Ability
- Synthesis of Some Novel Sulfonamide Derivatives and Investigating their Biocidal Activity in Cooling Towers
- Physical Chemistry
- Micellar Characteristics and Surface Properties of Some Sulfobetaine Surfactants
- Viscosity and Percolative Phenomena in AOT based Microemulsions
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Alkyl Polyglycoside/1-Naphthol Formulations: A Case Study of Surfactant Enhanced Oil Recovery
- 5-(3-Bromo-4-hydroxy-5-methoxyphenyl)-7,7-dimethyl-7H-indolo[1,2-a]quinolinium Perchlorate as a New Indicator for Anionic Surface Active Agents Determination
- Environmental Chemistry
- Kinetics and Adsorption Isotherms for the Removal of Tartrazine from Aqueous Solution by Coal Ash
- Removal of Triphenylmethane Dye from Aqueous Solution by Carbonaceous Adsorbent
- European Detergents Conference
- Nonequilibrium Association of Oppositely Charged Macromolecules and Amphiphiles
- Novel Surfactants
- Syntheses and Properties of New Double-tail Trisiloxane Surfactants with Both Hydrolysis Resistance and High Spreading Ability
- Synthesis of Some Novel Sulfonamide Derivatives and Investigating their Biocidal Activity in Cooling Towers
- Physical Chemistry
- Micellar Characteristics and Surface Properties of Some Sulfobetaine Surfactants
- Viscosity and Percolative Phenomena in AOT based Microemulsions