Startseite Use of Biomonitors for the Validation of Chemo-thermal Disinfecting Washing Procedures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Use of Biomonitors for the Validation of Chemo-thermal Disinfecting Washing Procedures

  • G. Kagemann , B. Hilgenberg , J. Rech , M. Heintz und L. Vossebein
Veröffentlicht/Copyright: 4. Juli 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this study was to investigate the advantages and disadvantages of different commercially available biomonitors for the validation of chemo-thermal disinfecting washing procedures in textile service enterprises. In the course of quality management systems (e.g. acc. to EN 14065: Risk Analysis and Biocontamination Control System, RABC-System) the performance of disinfecting washing procedures has to be controlled and validated periodically by the use of biomonitors. Biomonitors (typically small cotton fabrics) are loaded with bacteria and often encapsulated in semipermeable membranes. The following types of biomonitors are commercially available: a) “open design”, fabrics soaked with blood and bacteria enclosed in textile bags, b) monitors with bacteria enclosed in a semipermeable membrane and c) monitors surrounded by a semipermeable membrane and covered with a hard plastic surface. The membranes should avoid bacterial contamination of the textiles and environment because bacteria are too large to pass the membrane. It is commonly accepted in practice that liquids, proteins and disinfecting agents can diffuse through the membrane. However, big differences in the germ reductions measured with different biomonitors were detected, depending on their individual design. Therefore the diffusion properties of several detergent ingredients were quantified by using semipermeable membranes. It is demonstrated that proteins and even active oxygen species, are retained by these membranes and are thus not able to kill or inactivate bacteria inside the monitors. Hence the use of biomonitors with membranes should be reconsidered, because they are mainly able to detect thermal disinfection, but barely react to the chemical part of chemo-thermal disinfection procedures.

Kurzfassung

Ziel dieser Studie war es, die Vor- und Nachteile verschiedener kommerziell erhältlicher Biomonitore für die Validierung chemothermisch desinfizierender Waschprozesse in textilen Dienstleistungsunternehmen zu untersuchen. Im Rahmen von Qualitätsmanage-mentsystemen (z.B. gem. EN 14065: Risikoanalyse und Biokontaminationskontrollsystem, RABC-System) werden häufig Biomonitore (üblicherweise kleine Baumwollläppchen) eingesetzt, die mit Keimen beladen sind und häufig in einer semipermeablen Membran eingeschlossen sind, um chemothermisch desinfizierende Waschverfahren zu validieren. Die folgenden Typen von Biomonitoren sind käuflich zu erwerben: a) “offene Biomonitore”, die mit Keimen und Blut beladen sind und in textile Taschen gegeben werden, b) Monitore, die mit Keimen beladen und in einer semipermeablen Membran eingeschlossen sind und c) Biomonitore, die neben der semipermeablen Membran zusätzlich mit einer Hartplastikhülle umgeben sind. Die Membran besitzt meist eine Porengröße von 0,45 μm. Dies verhindert, dass Bakterien auf Textilien und in die Umgebung gelangen können, weil die Membran auf Grund ihrer Porengröße für Bakterien undurchlässig ist. Es wird jedoch allgemein angenommen, dass Flüssigkeiten, Proteine und Desinfektionsmittel sie durchdringen können. Die durchgeführten Untersuchungen zeigen, dass abhängig von dem “Design” starke Unterschiede in der mit den verschiedenen Monitoren gemessenen Keimreduktionsrate resultieren. Daher wurden die Diffusionseigenschaften von Waschmittelbestandteilen durch eine semipermeable Membran analysiert. Die Forschungsergebnisse demon-strieren, dass Proteine und Aktiv-Sauerstoff-Spezies kaum in der Lage sind, in adäquater Zeit durch derartige Membranen zu diffundieren. Schlussfolgernd sollte die Verwendung der Biomonitore mit Membranhülle überdacht werden, da sie hauptsächlich die thermische Komponente der Desinfektion detektieren, die chemische Komponente des chemothermischen Waschprozesses jedoch kaum berücksichtigen.


Correspondence to, Dr. Guido Kagemann, wfk-Forschungsinstitut für Reinigungstechnologie e.V., Campus Fichtenhain 11, D-47807 Krefeld, Germany, Phone: +4921518210122, Fax: +4921518210199, E-mail:

Dr. Guido Kagemann studied biology from 1997–2003 at the University of Bielefeld, Germany. He received his PhD degree in biochemistry and molecular biology from the “Heinrich-Heine-Universität Düsseldorf”, Germany, in 2006. Since 2007 he has been working as a researcher at the wfk-Cleaning Technology Research Institute in Krefeld.

Dipl. Biol. Britta Hilgenberg studied biology from 2000–2006 at the “Westfälische Wilhelms-Universität” Münster, Germany. Her research focus lies in microbiology. Since 2007 she has been working in research projects at the wfk-Cleaning Technology Research Institute in Krefeld.

Jennifer Rech works since 2007 at the wfk-Cleaning Technology Research Institute in Krefeld as a technician.

Dr. Manuel Heintz studied biology at the Westfälische Wilhelms-University Münster and at the Eberhard-Karls-University Tübingen from 1996–2002 with a major in microbiology. He finished his PhD in microbiology at the Technical University of Kaiserslautern in 2006 on the topic of expression profiles in Streptococcus pneumoniae. In March 2006 he joined wfk as a scientist in the field of hygiene and microbiology where he is responsible for testing and contract research in this field.

Dr. Lutz Vossebein studied biology from 1993–1998 at the “Freie Universität Berlin”, “Heinrich-Heine-Universtät-Düsseldorf” and the “Ruhr-Universtät Bochum”. After completing his masters degree in microbiology in 1998 he finished his PhD in biochemistry in 2002 at the “Ruhr-Universität Bochum”, faculty of medicine, institute for physiological chemistry, chair of biochemistry of supra-molecular systems. Currently he is working as team leader of the division for microbiology and hygiene at the wfk-Cleaning Technology Research Institute in Krefeld and assistant lecturer at the Niederrhein University of Applied Science in the field of microbiology as well as hospital and sanitary hygiene.


Refrences

1. DIN EN 14 065 – Textiles – Laundry processed textiles. Biocontamination control system, Beuth Verlag, Berlin May 2004.Suche in Google Scholar

2. Heintz, M., Krämer, J. and Vossebein, L.: Risk Analysis and Biocontamination Control – Hygiene Measures in Commercial Laundries. Tenside Surf. Det.44 (2007) 5, 274280.Suche in Google Scholar

3. Rouette, H. K.: Lexikon für Textilveredlung, Laumann-Verlag, Dülmen, 1995.Suche in Google Scholar

4. Standardmethoden der DGHM zur Prüfung chemischer Desinfektionsverfahren. Deutsche Gesellschaft für Hygiene und Mikrobiologie [DGHM], mhp-Verlag GmbH, 2001.Suche in Google Scholar

5. Liste der vom Robert Koch-Institut geprüften und anerkannten Desinfektionsmittel und -verfahren, Springer Medizin Verlag 2007.Suche in Google Scholar

6. Richtlinie für Krankenhaushygiene und Infektionsprävention Ziffer 4.4.3 und 6.4, Robert Koch-Institut (RKI) (Hrsg.), Elsevier Urban & Fischer, January 2007.Suche in Google Scholar

7. Renner, P. and Peters, J.: Resistance of enterococci to heat and chemical agents. Zentralbl. Hyg. Umweltmed.1999 Jun; 202(1): 4150.10.1016/S0934-8859(99)80052-2Suche in Google Scholar

8. Reshes, G., Vanounou, S., Fishov, I. and Feingold, M.: Cell shape dynamics in E. coli., Biophys. J.2007 Aug 31; [Epub ahead of print].Suche in Google Scholar

9. Spicher, G. and Peters, J.: Efficacy of Formaldehyde, Glutardialdehyde, Peracetic acid, Chloramine T (N-Chloro-4-toluenesulphonamide), m-Cresol, Ethanol, and Benzyldimethyldodecylammoniumbromide on Bacteria in Coagulated Blood (Model Experiments for Chemical Disinfection of Instruments). Zbl. Hyg.. 191 (1991) 457477.Suche in Google Scholar

10. Renner, P. and Peters, J.: Testing the Tuberculocidal Activity of Agents for Chemical Instrument Disinfection: Evaluating the Guideline of the Robert Koch Institute with Selected Active Substances. Hyg. Med.21 (1996) 271277.Suche in Google Scholar

11. Richtlinie für Krankenhaushygiene und Infektionsprävention, Loseblattwerk zur Fortsetzung, Robert-Koch-Institut (Hrsg.), ISBN: 978-3-437-22266-5; 2007.Suche in Google Scholar

12. Rademaker, J. L., Vissers, M. M. and Te Giffel, M. C.: Effective heat inactivation of Mycobacterium avium subsp. paratuberculosis in raw milk contaminated with naturally infected feces. Appl. Environ. Microbiol.2007 Jul; 73 (13): 41854190. Epub 2007 May 11.10.1128/AEM.00326-07Suche in Google Scholar PubMed PubMed Central

13. Scott, E. and Bloomfield, S. F.: Investigations of the effectiveness of detergent washing, drying and chemical disinfection on contamination of cleaning cloths. J. Appl. Bacteriol.1990 Mar; 68 (3): 279283.10.1111/j.1365-2672.1990.tb02575.xSuche in Google Scholar PubMed

14. Napimoga, M. H., de Oliveira, R., Reis, A. F., Gonçalves, R. B. and Giannini, M.: In vitro antimicrobial activity of peroxide-based bleaching agents. Quintessence Int.2007 Jun; 38 (6): e329333.Suche in Google Scholar

15. Scouten, A. J. and Beuchat, L. R.: Combined effects of chemical, heat and ultrasound treatments to kill Salmonella and Escherichia coli O157: H7 on alfalfa seeds. J. Appl. Microbiol.. 92 (4) (2002) 668674.Suche in Google Scholar

16. Spitzbart, H. and Eckert, L.: The use of Biozym as a cleaning and disinfecting agent in gynaecology and obstetrics. Zentralbl. Gynakol.106 (9) (1984) 624625. German.Suche in Google Scholar

17. Augustin, M., Ali-Vehmas, T. and Atroshi, F.: Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. J. Pharm. Sci.2004 Feb 18; 7 (1): 5564.Suche in Google Scholar

18. Madsen, G., Norman, B. and Slott, S.: A new heat stable bacterial amylase and its use in high temperature liquefaction. Die Stärke25 (1973) 304308.Suche in Google Scholar

Received: 2008-8-7
Published Online: 2013-07-04
Published in Print: 2008-11-01

© 2008, Carl Hanser Verlag, Munchen

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.100393/html
Button zum nach oben scrollen