Startseite Microstructure and Properties of Pearlitic Steel during Cold Wire Drawing: A Residual Stress Perspective*
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructure and Properties of Pearlitic Steel during Cold Wire Drawing: A Residual Stress Perspective*

  • M. Kriška , J. Tacq , K. Van Acker und M. Seefeldt
Veröffentlicht/Copyright: 22. Dezember 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The residual stress evolution during cold drawing of pearlitic steel wire was followed over a broad strain range by diffraction techniques. The present work discusses possible links between microstructural changes induced by severe deformation and their “footprints” left in the residual stresses on different – macro, micro and nano – scale levels. Energy dispersive synchrotron diffraction revealed a significant divergence in the grain microstress evolution among differently oriented ferrite grains in the high deformation regime beyond an accumulated true strain of about ∊t ≥ 2.3. A possible physical reason for the observed divergence is discussed in terms of a distinct microstructure development in this stage of the cold wire drawing.

Kurzfassung

Die Eigenspannungsentwicklung beim Kaltziehen von perlitischem Stahldraht wurde mit Hilfe von Röntgenbeugung über ein breites Dehnungsintervall verfolgt. Die vorliegende Arbeit diskutiert mögliche Verbindungen zwischen den bei sehr hohen Verformungen auftretenden Mikrostrukturveränderungen und ihren „Fußabdrücken“ in den Eigenspannungen auf den unterschiedlichen – makro-, mikro- und nanoskopischen – Längenskalen. Energiedispersive Beugung von Synchrotronstrahlung zeigte eine starke Divergenz der Mikrorestspannungen unter den verschieden orientierten Ferritkorngruppen im Bereich hoher Verformungen oberhalb von ∊t ≥ 2.3. Eine mögliche physikalische Ursache für diese Divergenz wird auf der Ebene der Mikrostrukturentwicklung in diesem Stadium des Kaltziehens besprochen.


2 (Corresponding author/Kontakt)
*

Enhanced contribution based upon a presentation at the International Conference on Residual Stresses ICRS9, October 7–9, 2012, in Garmisch-Partenkirchen, Germany


References

1. Verlinden, B.; Driver, J.; Samajdar, I.; Doherty, R. D.: Thermo-Mechanical Processing of Metallic Materials. Elsevier, 2007Suche in Google Scholar

2. Languillaume, J.; Kapelski, G.; Baudelet, B.: Cementite Dissolution in Heavily Cold Drawn Pearlitic Steel Wires. Acta mater.45 (1997), pp. 12011212, 10.1016/s1359-6454(96)00216-9Suche in Google Scholar

3. Sauvage, X.; Copreaux, J.; Danoix, F.; Blavette, D.: Atomic scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels. Phil. Mag. A80 (2000), pp. 781796, 10.1080/014186100250534Suche in Google Scholar

4. Kriška, M.; Tacq, J.; Van Acker, K.; Seefeldt, M.: Evolution of Residual Micro Phase and Orientation Dependent Stresses during Cold Wire Drawing. Proc. Int. Conf. on Residual Stresses, ICRS 9, 7–9.10.12, Garmisch-Partenkirchen, Germany; Trans Tech Publ. Inc., Durnten-Zurich, Switzerland, 2014, pp. 32733410.4028/www.scientific.net/MSF.768-769.327Suche in Google Scholar

5. Kriška, M.; Tacq, J.; Van Acker, K.; Seefeldt, M.; Van Petegem, S.: Neutron and X-ray Diffraction Study of Residual and Internal Stress Evolution in Pearlitic Steel During Cold Drawing. J. Phys., Conference Series.340 (2012), Article no. 012101, 10.1088/1742-6596/340/1/012101Suche in Google Scholar

6. Elices, M.: Influence of Residual Stresses in the Performance of Cold-Drawn Pearlitic Wires. J. Mater. Sci.39 (2004), pp. 38893899, DOI:10.1023/B:JMSC.0000031470.31354.b5Suche in Google Scholar

7. Martinez-Perez, M. L.; Mompean, F. J.; Ruiz-Hervias, J.; Borlado, C. R.; Atienza, J. M.; Garcia-Hernandez, M.; Elices, M.; Gil Sevillano, J.; Peng, R. L.; Buslaps, T.: Residual Stress Profiling in the Ferrite and Cementite Phases of Cold-drawn Steel Rods by Synchrotron X-ray and Neutron Diffraction. Acta Mater.52 (2004), pp. 53035313, 10.1016/j.actamat.2004.07.036Suche in Google Scholar

8. Phelippeau, A., Pommier, S.; Zakharchenko, I.; Levy-Tubian, R.; Tsakalakos, T.; Clavel, M.; Croft, M.; Zhong, Z.; Prioul, C.: Cold Drawn Steel Wires – Processing, Residual Stresses and Ductility, Part II: Synchrotron and Neutron Diffraction. Fatigue Fract. Eng. Mater. Struct.29 (2006), pp. 255265, 10.1111/j.1460-2695.2005.00987.xSuche in Google Scholar

9. Pyzalla, A.: Stress and Strain Measurements: X-rays and Neutrons. Physica B276–278 (2000), pp. 833836Suche in Google Scholar

10. Reimers, W.; Pyzalla, A.; Broda, M.; Brusch, G.; Dantz, D.; Schmackers, T.: The use of high-energy synchrotron diffraction for residual stress analyses. J. Mater. Sci. Lett.18 (1999), pp. 58158310.1023/A:1006651217517Suche in Google Scholar

11. Withers, P. J.; Turski, M.; Edwards, L.; Bouchard, P. J.; Buttle, D. J.: Recent Advances in Residual Stress Measurement. Int. J. Press. Vessels Piping85 (2008), pp. 118127, 10.1016/j.ijpvp.2007.10.007Suche in Google Scholar

12. Withers, P. J.; Webster, P. J.: Neutron and Synchrotron X-ray Strain Scanning. Strain37 (2001), pp. 1933, 10.1111/j.1475-1305.2001.tb01216.xSuche in Google Scholar

13. Kriška, M.; Tacq, J.; Van Acker, K.; Seefeldt, M.: Assessment of Total Residual Stress Evolution and Microstructure Changes in Pearlitic Steel During Wire Drawing. Proc. Asia Steel International Conference 2012, 24–26.08.12, Beijing, China, The Chinese Society for Metals, CMS, 2012 on CDSuche in Google Scholar

14. Genzel, Ch.; Denks, I. A.; Gibmeier, J.; Klaus, M.; Wagener, G.: The Materials Science Synchrotron Beamline EDDI for Energy-dispersive Diffraction Analysis. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment578 (2007), pp. 2333, 10.1016/j.nima.2007.05.209Suche in Google Scholar

15. Abdellaoui, A.; Montesin, T.; Heizmann, J. J.; Pelletier, J. B.: Study of the Texture of Steelcord during the Wet Drawing Process - Influence of the Patenting and the Friction on the Dies. Mater. Sci. Forum157–162 (1994), pp. 611616, 10.4028/www.scientific.net/MSF.157-162.611Suche in Google Scholar

16. Heizmann, J. J.; Montesin, T.; Vadon, A.: Circular Texture in Thin Wires. Mat. Sci. Forum.157–162 (1994), pp. 701708, 10.4028/www.scientific.net/MSF.157-162.701Suche in Google Scholar

17. Welzel, U.; Mittemeijer, E. J.: Applicability of the Crystallite Group Method to Fibre Textured Specimens. Mater. Sci Forum443–444 (2004), pp. 131134, 10.4028/www.scientific.net/MSF.443-444.131Suche in Google Scholar

18. Oliver, E. C.; Daymond, M. R.; Withers, P. J.: Interphase and Intergranular Stress Generation in Carbon Steels. Acta Mater.52 (2004), pp. 19371951, 10.1016/j.actamat.2003.12.035Suche in Google Scholar

19. Dieter, G. E.: Mechanical Metallurgy. McGraw-Hill, London, 1988Suche in Google Scholar

20. Apel, D.; Klaus, M.; Genzel, Ch.; Balzar, D.: Rietveld refinement of energy-dispersive synchrotron measurements. Z. Kristallogr.226 (2011), pp. 934943, 10.1524/zkri.2011.1436Suche in Google Scholar

21. Langford, G.: Deformation of Pearlite. Metall. Trans. A8 (1977), pp. 86187510.1007/BF02661567Suche in Google Scholar

22. Zhang, X.; Godfrey, A.; Hansen, N.; Huang, X.; Liu, W.; Liu, Q.: Evolution of Cementite Morphology in Pearlitic Steel Wire during Wet Wire Drawing. Mater. Charact.61 (2010), pp. 6572, 10.1016/j.matchar.2009.10.007Suche in Google Scholar

23. Zhang, X.; Godfrey, A.; Huang, X.; Hansen, N.; Liu, Q.: Microstructure and Strengthening Mechanisms in Cold-drawn Pearlitic Steel Wire. Acta Mater.59 (2011), pp. 34223430, 10.1016/j.actamat.2011.02.017Suche in Google Scholar

24. Zelin, M.: Microstructure Evolution in Pearlitic Steels During Wire Drawing. Acta Mater.50 (2002), pp. 44314447, 10.1016/s1359-6454(02)00281-1Suche in Google Scholar

25. Tomota, Y.; Lukáš, P.; Neov, D.; Harjo, S.; Abe, Y. R.: In situ Neutron Diffraction During Tensile Deformation of a Ferrite-Cementite Steel. Acta Mater.51 (2003), pp. 805817, 10.1016/s1359-6454(02)00472-xSuche in Google Scholar

26. Tomota, Y.; Suzuki, T.; Kanie, A.; Shiota, Y.; Uno, M.; Moriai, A.; Minakawa, N.; Morii, Y.: In Situ Neutron Diffraction of Heavily Drawn Steel Wires With Ultra-High Strength Under Tensile Loading. Acta Mater. 53 (2005), pp. 463467, 10.1016/j.actamat.2004.10.003Suche in Google Scholar

27. Li, S. Y.; Choi, P.; Borchers, Ch.; Westerkamp, S.; Goto, S.; Raabe, D.; Kirchheim, R.: Atomic-scale Mechanisms of Deformation-induced Cementite Decomposition in Pearlite. Acta Mater.59 (2011), pp. 39653977, 10.1016/j.actamat.2011.03.022Suche in Google Scholar

28. Umemoto, M.; Todaka, Y.; Tsuchiya, K.: Mechanical Properties of Cementite and Fabrication of Artificial Pearlite. Mate. Sci. Forum426–432 (2003), pp. 859864, 10.4028/www.scientific.net/MSF.426-432.859Suche in Google Scholar

29. Sauvage, X.; Lefebvre, W.; Genevois, C.; Ohsaki, S.; Hono, K.: Complementary use of Transmission Electron Microscopy and Atom Probe Tomography for the Investigation of Steels Nanostructured by Severe Plastic Deformation. Scri. Mater.60 (2009), pp. 10561061, 10.1016/j.scriptamat.2009.02.019Suche in Google Scholar

30. Fasiska, E.J.; Wagenblast, H.: Dilation of Alpha Iron by Carbon. Trans. Metall. Soc. AIME239 (1967), pp. 18181820Suche in Google Scholar

31. De Cooman, B. C.; Speer, J. G.: Fundamentals of Steel Product Physical Metallurgy. AIST, Warrendale, PA, USA, 2011Suche in Google Scholar

32. Hauk, V.: Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier, Amsterdam, NL, 1997Suche in Google Scholar

33. Ivanisenko, Y.; Lojkowski, W.; Valiev, R. Z.; Fecht, H.-F.: The Mechanism of Formation of Nanostructure and Dissolution of Cementite in a Pearlitic Steel during High Pressure Torsion. Acta Mater.51 (2003), pp. 55555570, 10.1016/S1359-6454(03)00419-1Suche in Google Scholar

34. Sauvage, X.; Chbihi, A.; Quelennec, X.: Severe Plastic Deformation and Phase Transformation. J. Phys.: Conf. Series240 (2010), no. 012003, 10.1088/1742-6596/240/1/012003Suche in Google Scholar

35. Shiota, Y., Tomota, Y.; Kamiyama, T.: Structure and Mechanical Behavior of Heavily Drawn Pearlite and Martensite in a High Carbon Steel. Met. Mater. Int.11 (2005), pp. 371376, 10.1007/bf03027507Suche in Google Scholar

36. Shiratori, T.; Shiota, Y.; Ryufuku, S.; Adachi, Y.; Suzuki, H.; Tomota, Y.: Effects of Carbon Content and Drawing Strain on Strength of Steel Wire. Proc. 3rd Int. Conf. on Advanced Structural Steels, ICASS 2006, 22–24.08.06, Gyeongju, Korea, Vol. 3, Korean Institute of Metals and Materials, 2006, pp. 354359Suche in Google Scholar

37. Tarui, T.; Takahashi, J.; Tashiro, H.; Maruyama, N.; Nishida, S.: Microstructure Control and Strengthening of High-carbon Steel Wires. Nippon Steel Technical Report No. 91, 2005, pp. 5661.10.2355/tetsutohagane1955.91.2_265Suche in Google Scholar

38. Yang, Y. S.; Park, C. G.; Bae, J. G.; Ban, D. Y.: Prediction of the Delamination in the Pearlitic Steel Filaments by 3 Dimensional Atom Probe Tomography. Int. J. Modern Physics B.22 (2008), pp. 54715476, 10.1142/s021797920805067xSuche in Google Scholar

39. Gil Sevillano, J.; Alkorta, J.; González, D.; Van Petegem, S.; Stuhr, U.; Van Swygenhoven, H.: In situ Neutron Diffraction Study of Internal Micro-Stresses Developed by Plastic Elongationin <110> Textured BCC Wires. Adv. Eng. Mater.10 (2008), pp. 951954, 10.1002/adem.200800209Suche in Google Scholar

40. Li, Y. J.; Choi, P.; Borchers, C.; Chen, Y. Z.; Goto, S.; Raabe, D.; Kirchheim, R.: Atom Probe Tomography Characterization of Heavily Cold Drawn Pearlitic Steel Wire. Ultramicroscopy111 (2011), pp. 628632, 10.1016/j.ultramic.2010.11.010Suche in Google Scholar PubMed

Published Online: 2014-12-22
Published in Print: 2014-04-30

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/105.110217/html?lang=de
Button zum nach oben scrollen