Stress Build-Up during Multilayer Welding with Novel Martensitic Filler Materials*
-
A. Kromm
und T. Kannengießer
Abstract
Controlling the level of mostly detrimental residual stresses already during the welding process would be highly attractive as time and cost consuming post processing may be prevented. Innovative Low Transformation Temperature (LTT-) filler materials are specially designed for controlling weld residual stresses by means of adjusted martensite formation already during welding. Numerous publications can be found on this issue, but they provide only little insight into the interaction between martensite formation and resulting welding residual stresses. Within this study a component weld test was performed in a special large-scale testing facility. In-situ load analysis revealed that the amount of stress reduction during deposition of the individual weld runs is dependent on the weld volume undergoing phase transformation related to the shrinking volume. The residual stresses found after welding show that the desired residual stress control by using LTT alloys is sensitive to welding boundary conditions (i. e. weld geometry, plate thickness) and to be evaluated separately for varying weld scenarios.
Kurzfassung
Neuartige sogenannte Low-Transformation-Temperature (LTT)- Schweißzusätze weisen eine chemische Zusammensetzung auf, welche die Martensitbildung zu vergleichsweise niedrigen Temperaturen verschiebt. Dies wirkt sich maßgeblich auf die nach dem Schweißen vorliegenden Eigenspannungen aus. Obwohl dazu zahlreiche Veröffentlichungen vorliegen, blieben die Wirkzusammenhänge zwischen Umwandlungstemperatur und Schweißeigenspannungen bislang ungeklärt. Aus diesem Grund wurde in der vorliegenden Arbeit ein Versuch in einer Großprüfanlage durchgeführt, um den Einfluss der Martensitumwandlung während des Mehrlagenschweißens zu analysieren. Die In-Prozess-Beobachtung der auftretenden Kräfte und Momente offenbarte, dass die Eigenspannungsreduktion vom jeweils umwandelnden Volumen abhängt. Die Analyse der Schweißeigenspannungen verdeutlichte, dass die angestrebte Eigenspannungsbeeinflussung durch den Zusatzwerkstoff stark von den Randbedingungen (d. h. Nahtaufbau, Blechdicke) abhängt und einer Bewertung im jeweiligen Anwendungsfall bedarf.
References
1. Ota, A.; Watanabe, O.; Matsuoka, K.; Siga, C.; Nishijima, S.; Maeda, Y.; Suzuki, N.; Kubo, T.: Fatigue Strength improvement by using newly developed low transformation temperature welding material. Weld. World43 (1999) 6, p. 38–42Suche in Google Scholar
2. Martinez Diez, F.: Development of Compressive Residual Stress in Structural Steel Weld Toes by Means of Weld Metal Phase Transformations. Weld. World52 (2008) 7–8, p. 63–78, 10.1007/bf03266655Suche in Google Scholar
3. Wang, W.; Huo, L.; Zhang, Y.; Wang, D.; Jing, H.: New Developed Welding Electrode for Improving the Fatigue Strength of Welded Joints. J. Mater. Sci. Technol.18 (2002) 6, p. 527–531Suche in Google Scholar
4. Lixing, H.; Dongpo, W.; Wenxian, W.; Yufeng, Z.: Ultrasonic Peening and Low Transformation Temperature Electrodes used for improving the Fatigue Strength of Welded Joints. Weld. World48 (2004) 3–4, p. 34–39, 10.1007/bf03266425Suche in Google Scholar
5. Dai, H.; Francis, J. A.; Stone, H. J.; Bhadeshia, H. K. D. H.; Withers, P. J.: Characterizing Phase Transformations and Their Effect on Ferritic Weld Residual Stresses with X-rays and Neutrons. Metall. Mater. Trans. A39A (2008), p. 3070–3078, 10.1007/s11661-008-9616-0Suche in Google Scholar
6. Kromm, A.; Kannengiesser, T.; Gibmeier, J.: In-situ Observation of Phase Transformations during Welding of Low Transformation Temperature Filler Material. Mater. Sci. Forum638–642 (2010), p. 3769–3774, 10.4028/www.scientific.net/msf.638-642.3769Suche in Google Scholar
7. Shiga, C.; Yasuda, H. Y.; Hiraoka, K.; Suzuki, H.: Effect of Ms temperature on residual stress in welded joints of high-strength steels. Weld. World54 (2010) 3–4, p. 71–79, 10.1007/bf03263490Suche in Google Scholar
8. Altenkirch, J.; Gibmeier, J.; Kromm, A.; Kannengiesser, T.; Nitschke-Pagel, T.; Hofmann, M.: In situ study of structural integrity of low transformation temperature (LTT)-welds. Mater. Sci. Eng. A528 (2011), p. 5566–5575, 10.1016/j.msea.2011.03.091Suche in Google Scholar
9. Kromm, A.; Kannengiesser, T.; Altenkirch, J.; Gibmeier, J.: Residual Stresses in Multilayer Welds with Different Martensitic Transformation Temperatures Analyzed by High-Energy Synchrotron Diffraction. Mater. Sci. Forum681 (2011), p. 37–42, 10.4028/www.scientific.net/msf.681.37Suche in Google Scholar
10. Lausch, T.; Kannengiesser, T; Schmitz-Niederau, M.: Multi-axial load analysis of thick-walled component welds made of 13CrMoV9-10. J. Mater. Process. Tech.213 (2013) 7, p. 1234–1240, 10.1016/j.jmatprotec.2013.01.008Suche in Google Scholar
11. Nitschke-Pagel, T.; Wohlfahrt, H.: Residual stresses in welded joints – sources and consequences. Mater. Sci. Forum404–407 (2002), p. 215–226, 10.4028/www.scientific.net/msf.404-407.215Suche in Google Scholar
12. Jones, W. K. C.; Alberry, P. J.: A model for stress accumulation in steels during welding. Proc. Int. Conf. on Residual stresses in welded construction and their effects, 15–17.11.77, London, UK; Vol. 1, The Welding Institute, Abington, Cambridge, UK, 1977, paper 2, p. 15–26Suche in Google Scholar
13. Eigenmann, B.; Macherauch, E.: Röntgenographische Untersuchung von Spannungszuständen im Werkstoffen. Mat.-wiss. u. Werkstofftechn.27 (1996), p. 426–437, 10.1002/mawe.19960270907Suche in Google Scholar
14. Christian, H.; Elfinger, F.-X.; Schüller, H.-J.: Eigenspannungen – ihre Bedeutung in der Praxis. DVS Berichte107, DVS Verlag, Düsseldorf, 1987, p. 67–81Suche in Google Scholar
15. Gibmeier, J.; Obelode, E.; Altenkirch, J.; Kromm, A.; Kannengiesser, T.: Residual stress in steel fusion welds joined using low transformation temperature (LTT) filler material. Mater. Sci. Forum768–769 (2014), p. 620–627, 10.4028/www.scientific.net/msf.768-769.620Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Veranstaltungen/Events
- Veranstaltungen in Zusammenarbeit mit der AWT
- HTM-Praxis
- HTM-Praxis
- Kurzfassungen/Abstracts
- Kurzfassungen
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Preface
- Residual Stress in the Cementite Phase of Cold Drawn Pearlite*
- Residual Stress Analysis of Thick Film Systems by the Incremental Hole-Drilling Method*
- Stress Build-Up during Multilayer Welding with Novel Martensitic Filler Materials*
- Characterization of Residual Stress Evolved in Iron-Based Shape Memory Alloys*
- Microstructure and Properties of Pearlitic Steel during Cold Wire Drawing: A Residual Stress Perspective*
- Shot Peening Induced Plastic Deformation in Cast Iron – Influence of Graphite Morphology*
- Heat Treatment Effects of Laser Cladded 12 Ni Maraging Tool Steel with Ni-Co-Mo Alloys*
Artikel in diesem Heft
- Veranstaltungen/Events
- Veranstaltungen in Zusammenarbeit mit der AWT
- HTM-Praxis
- HTM-Praxis
- Kurzfassungen/Abstracts
- Kurzfassungen
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Preface
- Residual Stress in the Cementite Phase of Cold Drawn Pearlite*
- Residual Stress Analysis of Thick Film Systems by the Incremental Hole-Drilling Method*
- Stress Build-Up during Multilayer Welding with Novel Martensitic Filler Materials*
- Characterization of Residual Stress Evolved in Iron-Based Shape Memory Alloys*
- Microstructure and Properties of Pearlitic Steel during Cold Wire Drawing: A Residual Stress Perspective*
- Shot Peening Induced Plastic Deformation in Cast Iron – Influence of Graphite Morphology*
- Heat Treatment Effects of Laser Cladded 12 Ni Maraging Tool Steel with Ni-Co-Mo Alloys*