Startseite Interstitial elements in steel: effect on structure and properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Interstitial elements in steel: effect on structure and properties

Dedicated to Professor Hans Berns on the occasion of his 75th birthday
  • V. Gavriljuk und B. Shanina
Veröffentlicht/Copyright: 18. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Atomic distribution, thermodynamic stability of solid solutions and properties of dislocations in steels are discussed in terms of the effect of carbon, nitrogen and hydrogen on the electronic structure of iron. It is shown that nitrogen and hydrogen increase the density of electron states at the Fermi level, which results in the enhanced metallic character of interatomic bonds, whereas carbon acts in the opposite direction and enhances the covalent bonds. Some remarkable features of mechanical behavior of austenitic steels containing carbon, nitrogen and hydrogen are analyzed based on the differences and similarities of the electronic structure.

Kurzfassung

Die Verteilung der Atome, thermodynamische Stabilität fester Lösungen und Eigenschaften von Versetzungen in Stählen werden in Bezug auf den Einfluss von Kohlenstoff, Stickstoff und Wasserstoff auf die Elektronenstruktur des Eisens diskutiert. Es wird gezeigt, dass Stickstoff und Wasserstoff die Dichte der Elektronenzustände im Fermi-Niveau erhöhen, was sich in einem zunehmenden metallischen Charakter der interatomaren Bindungen ausdrückt. Kohlenstoff wirkt dagegen in die entgegengesetzte Richtung und verstärkt die kovalenten Bindungen. Einige wichtige Kennzeichen des mechanischen Verhaltens austenitischer Stähle mit Kohlenstoff, Stickstoff und Wasserstoff werden auf der Grundlage von Unterschieden und Ähnlichkeiten der Elektronenstruktur diskutiert.

References

1. Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J.: WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz. Techn. Universität, Wien, Austria, 2001. – ISBN 3-9501031-1-2Suche in Google Scholar

2. Shanina, B. D.; Gavriljuk, V. G.; Konchitz, A. A.; Kolesnik, S. P.; Tarasenko, A. V.: Exchange interaction between electron subsystems in iron-based F.C.C. alloys doped by nitrogen or carbon. Physica Status Solidi a149 (1995), pp. 71122Suche in Google Scholar

3. Shanina, B. D.; Gavriljuk, V. G.; Kolesnik, S. P.; Shivanyuk, V. N.: Paramagnetic spin resonance in hydrogen-charged stainless austenitic steels. J. Physics D: Applied Physics32 (1999), pp. 29830410.1088/0022-3727/32/3/018Suche in Google Scholar

4. Shanina, B. D.; Gavriljuk, V. G.; Konchitz, A. A.; Kolesnik, S. P.: The influence of substitutional atoms upon the electron structure of the iron-based transition metal alloys. J. Phys.: Condensed Matter10 (1998), pp. 1825183810.1088/0953-8984/10/8/015Suche in Google Scholar

5. Sozinov, A. L.; Balanyuk, A. G.; Gavriljuk, V. G.: C-C interaction in iron-base austenite and interpretation of Mössbauer spectra. Acta Mater.45 (1997) 1, pp. 22522510.1016/S1359-6454(96)00138-3Suche in Google Scholar

6. Sozinov, A. L.; Balanyuk, A. G.; Gavriljuk, V. G.: N-N interaction and nitrogen activity in the iron base austenite. Acta Mater.47 (1999) 3, pp. 927927.10.1016/S1359-6454(98)00394-2Suche in Google Scholar

7. Gavriljuk, V. G.; Sozinov, A. L.; Balanyuk, A. G.; Grigoriev, S. V.; Gubin, O. A.; Kopitsa, G. P.; Okorokov, A. I.; Runov, V. V.: Effect of Carbon and Nitrogen on ChemicalInhomogeneity of fcc Iron-BasedAlloys. Metall. Mater. Trans.A28 (1997) 11, pp. 2195219510.1007/s11661-997-0177-4Suche in Google Scholar

8. Gavriljuk, V. G.; Shanina, B. D.; Berns, H.: On the correlation between electron structure and short-range atomic order in iron-based alloys. Acta Mater.48 (2000) 15, pp. 3879387910.1016/S1359-6454(00)00192-0Suche in Google Scholar

9. Balanyuk, A. G.; Gavriljuk, V. G.; Shivanyuk, V. N.; Tyshchenko, A. I.; Rawers, J.: Mössbauer study and thermodynamic modeling of Fe-C-N alloy. Acta Mater.48 (2000) 15, pp. 3813381310.1016/S1359-6454(00)00208-1Suche in Google Scholar

10. Shanina, B. D.; Gavriljuk, V. G.; Berns, H.: Atomic interactions in stainless austenitic CrMn steels alloyed with C, N or (C+N). Materials Science Forum539-543 (2007), pp. 4993499810.4028/www.scientific.net/MSF.539-543.4993Suche in Google Scholar

11. Berns, H.; Duz, V. A.; Ehrhardt, R.; Gavriljuk, V. G.; Tarasenko, A. V.: Mössbauer study of tempering of stainless martensitic steel alloyed with nitrogen and/or carbon. Metal Physics and Advanced Technologies (in Russian)17 (1995) 6, pp. 1919Suche in Google Scholar

12. Berns, H.; Duz, V.A.; Ehrhardt, R.; Gavriljuk, V.G.; Petrov, Yu. N.; Tarasenko, A.V.: Precipitation during tempering of chromium-rich iron-based martensite alloyed with carbon and nitrogen. Z. f. Metallkd.88 (1997) 2, pp. 109109.Suche in Google Scholar

13. Shanina, B.; Gavriljuk, V.; Berns, H.; Schmalt, F.: Concept of a new high-strength low-cost stainless steel. Steel research73 (2002) 3, pp. 105105Suche in Google Scholar

14. Gavriljuk, V. G.; Shanina, B. D.; Berns, H.: Ab initio development of a high-strength corrosion-resistant austenitic steel. Acta Mater.56 (2008), pp. 5071508210.1016/j.actamat.2008.06.021Suche in Google Scholar

15. Ponyatovsky, E. G.; Antonov, V. E.; Belash, I. T.: Properties of high pressure phases in metal-hydrogen systems (in Russian). Sov. Phys. Usp.25 (1982), pp. 59661910.1070/PU1982v025n08ABEH004589Suche in Google Scholar

16. Rigsbee, J. M.: TEM observations on hydrogen-induced ∊-HCP martensite. Metallo-graphy11 (1978), pp. 49349810.1016/0026-0800(72)90074-2Suche in Google Scholar

17. Noskova, N. I.; Pavlov, V. A.; Nemnonov, S. A.: A correlation between the stacking fault energy and structure of metals (in Russian). Physics Metals Metallogr.20 (1965) 6, pp. 920920Suche in Google Scholar

18. Gavriljuk, V. G.; Berns, H.: High Nitrogen Steels. Springer, Berlin, 199910.1007/978-3-662-03760-7Suche in Google Scholar

19. Gavriljuk, V.; Petrov, Yu.; Shanina, B.: Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels. Scripta Mater.55 (2006), pp. 53754010.1016/j.scriptamat.2006.05.025Suche in Google Scholar

20. Harzenmoser, M. A. E.: Massive aufgestickte austenitisch-rostfreie Stähle und Duplexstähle. Doctoral thesis, Eidgenössische Technische Hochschule, Zürich, 1990Suche in Google Scholar

21. Nilsson, J. O.; Thorvaldsson, T.: The influence of nitrogen on microstructure and strength of a high-alloy austenitic stainless steel. Scand. J. Metallurgy15 (1985), pp. 8389Suche in Google Scholar

22. Grujicic, M.: The effect of nitrogen on the structure and mobility of dislocations in Fe-Ni-Cr austenite. J. Mater. Sci.30 (1995) 22, pp. 5799579910.1007/BF00356724Suche in Google Scholar

23. Nyilas, A.; Obst, B.; Nakajima, H.: Tensile properties, fracture and crack growth of a nitrogen strengthened new stainless steel (Fe-25Cr-15Ni-0.35N) for cryogenic use. In: Gavriljuk, V. G.; Nadutov, V. M. (Eds.): High Nitrogen Steels, HNS 93. Institute for Metal Physics, Kiev (1993), pp. 339344Suche in Google Scholar

24. Seeger, A.: The temperature dependence of the critical shear stress and of work-hardening of metal crystals. Phil. Mag.45 (1954) 366, pp. 771771Suche in Google Scholar

25. Gavriljuk, V. G.; Sozinov, A. L.; Foct, J.; Petrov, Yu. N.; Polushkin, Yu. A.: Effect of nitrogen on the temperature dependence of the yield strength of austenitic steels. Acta Mater.46 (1998) 4, pp. 1157115710.1016/S1359-6454(97)00322-4Suche in Google Scholar

26. Teus, S. M.; Shyvanyuk, V. N.; Shanina, B. D.; Gavriljuk, V. G.: Effect of hydrogen on electronic structure of fcc iron in relation to hydrogen embrittlement of austenitic steels. Phys. Stat. Sol. a204 (2007) 12, pp. 4249424910.1002/pssa.200723249Suche in Google Scholar

27. Gavriljuk, V. G.; Shivanyuk, V. N.; Shanina, B. D.: Change in the electron structure caused by C, N and H atoms in iron and its effect on their interaction with dislocations. Acta Mater.53 (2005) 19, pp. 50175017Suche in Google Scholar

28. Gavriljuk, V. G.; Shivanyuk, V. N.; Foct, J.: Diagnostic experimental results on the hydrogen embrittlement of austenitic steel. Acta Mater.51 (2003), pp. 1293130510.1016/S1359-6454(02)00524-4Suche in Google Scholar

29. Gavriljuk, V. G.; Shyvanyuk, V. N.; Teus, S. M.: Hydrogen brittleness of austenitic steels. Materials Science Forum538–642 (2010), pp. 10410910.4028/www.scientific.net/MSF.638-642.104Suche in Google Scholar

30. Tomota, Y.; Xia, Y.; Inoue, K.: Mechanism of low temperature brittle fracture in highnitrogen bearing austenitic steels. Acta Mater.46 (1998) 5, pp. 1577157710.1016/S1359-6454(97)00350-9Suche in Google Scholar

31. Larikov, L. N.; Falchenko, V. M.; Mazanko, V. F.; Gurevich, S. M.; Kharchenko, G. I.; Ignatenko, A. I.: Abnormal acceleration of diffusion during impulse loading of metals. Reports of Academy of Sciences of USSR (in Russian)221 (1975) 5, pp. 10731073Suche in Google Scholar

32. Gavriljuk, V. G.; Hetsricken, D. S.; Falchenko, V. M.; Polushkin, Yu. A.: Mechanism of decomposition of cementite during cold work of steel. Phys. Metals Metallogr.51 (1981) 1, pp. 147147Suche in Google Scholar

33. Teirlinck, D.; Zok, F.; Embury, J. D.; Ashby, M. F.: Fracture mechanism maps in stress space. Acta Metall.36 (1988), p. 1213.10.1016/0001-6160(88)90274-XSuche in Google Scholar

Published Online: 2013-05-18
Published in Print: 2010-08-01

© 2010, Carl Hanser Verlag, München

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/105.110070/html
Button zum nach oben scrollen