Abstract
The Diels-Alder reaction was used to fabricate hydroxypropyl methylcellulose-based hydrogels. First, hydroxypropylmethylcellulose (HPMC) was modified by a carboxyl-containing diene molecule (SFA) which was synthesised from furfurylamine and succinic anhydride. Second, dienophile groups were introduced into HPMC by the coupling reaction with N-maleoyl alanine (AMI) using N,N′-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). Subsequently, the asprepared furan- and maleimide-modified HPMC were dissolved in water and gelation was observed at a pre-determined temperature after a period of time. The samples thus obtained were characterised by FTIR, NMR, SEM, etc. The gelation time changing with temperature, concentration of the solution, and solvent was measured. It was found that gelation time decreased with increasing temperature and concentration of the solution, and that water had a rate-accelerating effect on Diels-Alder reaction. The swelling behaviour indicates that the hydrogels have a high swelling ratio in water and the swelling ratio increases with the increasing temperature. Taking into consideration that the HPMC-based hydrogels are prepared under mild reaction conditions with an adjustable gelation time and thermal stability, the method described here has a potential application in biomaterials, especially in the areas of tissue-engineering and drug-controlled release carriers.
[1] Abe, K., & Yano, H. (2012). Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose, 19, 1907–1912. DOI: 10.1007/s10570-012-9784-3. http://dx.doi.org/10.1007/s10570-012-9784-310.1007/s10570-012-9784-3Search in Google Scholar
[2] Bajpai, A. K., & Giri, A. (2002). Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. Reactive & Functional Polymers, 53, 125–141. DOI: 10.1016/s1381-5148(02)00168-2. http://dx.doi.org/10.1016/S1381-5148(02)00168-210.1016/S1381-5148(02)00168-2Search in Google Scholar
[3] Bao, Y., Ma, J., & Sun, Y. (2012). Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydrate Polymers, 88, 589–595. DOI: 10.1016/j.carbpol.2012.01.003. http://dx.doi.org/10.1016/j.carbpol.2012.01.00310.1016/j.carbpol.2012.01.003Search in Google Scholar
[4] Burdock, G. A. (2007). Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food and Chemical Toxicology, 45, 2341–2351. DOI: 10.1016/j.fct.2007.07.011. http://dx.doi.org/10.1016/j.fct.2007.07.01110.1016/j.fct.2007.07.011Search in Google Scholar PubMed
[5] Chang, C., & Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84, 40–53. DOI: 10.1016/j.carbpol.2010.12.023. http://dx.doi.org/10.1016/j.carbpol.2010.12.02310.1016/j.carbpol.2010.12.023Search in Google Scholar
[6] Choi, S. W., Moon, S. K., Chu, J. Y., Lee, H. W., Park, T. J., & Kim, J. H. (2012). Alginate hydrogel embedding poly(d,l-lactide-co-glycolide) porous scaffold disks for cartilage tissue engineering. Macromolecular Research, 20, 447–452. DOI: 10.1007/s13233-012-0130-2. http://dx.doi.org/10.1007/s13233-012-0130-210.1007/s13233-012-0130-2Search in Google Scholar
[7] Dalvi, S. V., & Dave, R. N. (2010). Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation. International Journal of Pharmaceutics, 387, 172–179. DOI: 10.1016/j.ijpharm.2009.12.026. http://dx.doi.org/10.1016/j.ijpharm.2009.12.02610.1016/j.ijpharm.2009.12.026Search in Google Scholar PubMed
[8] Das, R., Panda, A. B., & Pal, S. (2012). Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose, 19, 933–945. DOI: 10.1007/s10570-012-9692-6. http://dx.doi.org/10.1007/s10570-012-9692-610.1007/s10570-012-9692-6Search in Google Scholar
[9] Diaf, K., El Bahri, Z., Chafi, N., Belarbi, L., & Mesli, A. (2012). Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres. Chemical Papers, 66, 779–786. DOI: 10.2478/s11696-012-0191-x. http://dx.doi.org/10.2478/s11696-012-0191-x10.2478/s11696-012-0191-xSearch in Google Scholar
[10] Ding, C., Zhang, M., Tian, H., & Li, G. (2013). Effect of hydroxypropyl methylcellulose on collagen fibril formation in vitro. International Journal of Biological Macromolecules, 52, 319–326. DOI: 10.1016/j.ijbiomac.2012.10.003. http://dx.doi.org/10.1016/j.ijbiomac.2012.10.00310.1016/j.ijbiomac.2012.10.003Search in Google Scholar PubMed
[11] Escudero, J. J., Ferrero, C., Casas, M., & Jiménez-Castellanos, M. R. (2012). Compaction properties, drug release kinetics and fronts movement studies of matrices combining mixtures of swellable and inert polymers. III: Effect of polymer substitution type. International Journal of Pharmaceutics, 434, 215–223. DOI: 10.1016/j.ijpharm.2012.05.027. http://dx.doi.org/10.1016/j.ijpharm.2012.05.02710.1016/j.ijpharm.2012.05.027Search in Google Scholar PubMed
[12] Fan, L., Tan, C., Wang, L., Pan, X., Cao, M., Wen, F., Xie, W., & Nie, M. (2013). Preparation, characterization and the effect of carboxymethylated chitosan-cellulose derivatives hydrogels on wound healing. Journal of Applied Polymer Science, 128, 2789–2796. DOI: 10.1002/app.38456. http://dx.doi.org/10.1002/app.3845610.1002/app.38456Search in Google Scholar
[13] Fruk, L., Grondin, A., Smith, W. E., & Graham, D. (2002). A new approach to oligonucleotide labelling using Diels-Alder cycloadditions and detection by SERRS. Chemical Communications, 2002, 2100–2101. DOI: 10.1039/b204790j. http://dx.doi.org/10.1039/b204790j10.1039/B204790JSearch in Google Scholar PubMed
[14] Goodwin, D. J., Picout, D. R., Ross-Murphy, S. B., Holland, S. J., Martini, L. G., & Lawrence, M. J. (2011). Ultrasonic degradation for molecular weight reduction of pharmaceutical cellulose ethers. Carbohydrate Polymers, 83, 843–851. DOI: 10.1016/j.carbpol.2010.08.068. http://dx.doi.org/10.1016/j.carbpol.2010.08.06810.1016/j.carbpol.2010.08.068Search in Google Scholar
[15] Granja, P. L., De Jéso, B., Bareille, R., Rouais, F., Baquey, C., & Barbosa, M. A. (2006). Cellulose phosphates as biomaterials. In vitro biocompatibility studies. Reactive & Functional Polymers, 66, 728–739. DOI: 10.1016/j.reactfunctpolym.2005.10.027. http://dx.doi.org/10.1016/j.reactfunctpolym.2005.10.02710.1016/j.reactfunctpolym.2005.10.027Search in Google Scholar
[16] Han, J., Lei, T., & Wu, Q. (2014). High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by welldispersed cellulose nanoparticles: Dynamic rheological properties and hydrogel formation mechanism. Carbohydrate Polymers, 102, 306–316. DOI: 10.1016/j.carbpol.2013.11.045. http://dx.doi.org/10.1016/j.carbpol.2013.11.04510.1016/j.carbpol.2013.11.045Search in Google Scholar PubMed
[17] Hao, J., & Weiss, R. A. (2013). Mechanical behavior of hybrid hydrogels composed of a physical and a chemical network. Polymer, 54, 2174–2182. DOI: 10.1016/j.polymer.2013.01.052. http://dx.doi.org/10.1016/j.polymer.2013.01.05210.1016/j.polymer.2013.01.052Search in Google Scholar
[18] Hardy, I. J., Windberg-Baarup, A., Neri, C., Byway, P. V., Booth, S. W., & Fitzpatrick, S. (2007). Modulation of drug release kinetics from hydroxypropyl methyl cellulose matrix tablets using polyvinyl pyrrolidone. International Journal of Pharmaceutics, 337, 246–253. DOI: 10.1016/j.ijpharm.2007.01.026. http://dx.doi.org/10.1016/j.ijpharm.2007.01.02610.1016/j.ijpharm.2007.01.026Search in Google Scholar PubMed
[19] Hill, K. W., Taunton-Rigby, J., Carter, J. D., Kropp, E., Vagle, K., Pieken, W., McGee, D. P. C., Husar, G. M., Leuck, M., Anziano, D. J., & Sebesta, D. P. (2001). Diels-Alder bioconjugation of diene-modified oligonucleotides. The Journal of Organic Chemistry, 66, 5352–5358. DOI: 10.1021/jo0100190. http://dx.doi.org/10.1021/jo010019010.1021/jo0100190Search in Google Scholar PubMed
[20] Hu, X., Hu, K., Zeng, L., Zhao, M., & Huang, H. (2010). Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study. Carbohydrate Polymers, 82, 62–68. DOI: 10.1016/j.carbpol.2010.04.023. http://dx.doi.org/10.1016/j.carbpol.2010.04.02310.1016/j.carbpol.2010.04.023Search in Google Scholar
[21] Jo, S., Kim, S., & Noh, I. (2012). Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromolecular Research, 20, 968–976. DOI: 10.1007/s13233-012-0138-7. http://dx.doi.org/10.1007/s13233-012-0138-710.1007/s13233-012-0138-7Search in Google Scholar
[22] Karaaslan, M. A., Tshabalala, M. A., Yelle, D. J., & Buschle-Diller, G. (2011). Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydrate Polymers, 86, 192–201. DOI: 10.1016/j.carbpol.2011.04.030. http://dx.doi.org/10.1016/j.carbpol.2011.04.03010.1016/j.carbpol.2011.04.030Search in Google Scholar
[23] Katono, H., Maruyama, A., Sanui, K., Ogata, N., Okano, T., & Sakurai, Y. (1991). Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid). Journal of Controlled Release, 16, 215–228. DOI: 10.1016/0168-3659(91)90045-f. http://dx.doi.org/10.1016/0168-3659(91)90045-F10.1016/0168-3659(91)90045-FSearch in Google Scholar
[24] Khan, I. A., Anjum, K., Koya, P. A., & Kabir-ud-Din (2013). Effect of inorganic salts on the clouding behavior of hydroxypropyl methyl cellulose in presence of amphiphilic drugs. Colloids and Surfaces B: Biointerfaces, 103, 496–501. DOI: 10.1016/j.colsurfb.2012.10.028. http://dx.doi.org/10.1016/j.colsurfb.2012.10.02810.1016/j.colsurfb.2012.10.028Search in Google Scholar PubMed
[25] Kim, T. D., Luo, J., Tian, Y., Ka, J. W., Tucker, N. M., Haller, M., Kang, J. W., & Jen, A. K. Y. (2006). Diels-Alder “click chemistry” for highly efficient electrooptic polymers. Macromolecules, 39, 1676–1680. DOI: 10.1021/ma052087k. http://dx.doi.org/10.1021/ma052087k10.1021/ma052087kSearch in Google Scholar
[26] Kowalczuk, J., Tritt-Goc, J., & Pi’slewski, N. (2004). The swelling properties of hydroxypropyl methyl cellulose loaded with tetracycline hydrochloride: magnetic resonance imaging study. Solid State Nuclear Magnetic Resonance, 25, 35–41. DOI: 10.1016/j.ssnmr.2003.03.016. http://dx.doi.org/10.1016/j.ssnmr.2003.03.01610.1016/j.ssnmr.2003.03.016Search in Google Scholar PubMed
[27] Kowalczuk, J., & Tritt-Goc, J. (2011). Effect of microwave irradiation on the hydroxypropyl methylcellulose powder and its hydrogel studied by magnetic resonance imaging. Carbohydrate Polymers, 83, 166–170. DOI: 10.1016/j.carbpol.2010.07.037. http://dx.doi.org/10.1016/j.carbpol.2010.07.03710.1016/j.carbpol.2010.07.037Search in Google Scholar
[28] Kuang, J., Yuk, K. Y., & Huh, K. M. (2011). Polysaccharidebased superporous hydrogels with fast swelling and superabsorbent properties. Carbohydrate Polymers, 83, 284–290. DOI: 10.1016/j.carbpol.2010.07.052. http://dx.doi.org/10.1016/j.carbpol.2010.07.05210.1016/j.carbpol.2010.07.052Search in Google Scholar
[29] Laity, P. R., & Cameron, R. E. (2010). Synchrotron X-ray microtomographic study of tablet swelling. European Journal of Pharmaceutics and Biopharmaceutics, 75, 263–276. DOI: 10.1016/j.ejpb.2010.02.009. http://dx.doi.org/10.1016/j.ejpb.2010.02.00910.1016/j.ejpb.2010.02.009Search in Google Scholar PubMed
[30] Laity, P. R., Mantle, M. D., Gladden, L. F., & Cameron, R. E. (2010). Magnetic resonance imaging and X-ray microtomography studies of a gel-forming tablet formulation. European Journal of Pharmaceutics and Biopharmaceutics, 74, 109–119. DOI: 10.1016/j.ejpb.2009.06.014. http://dx.doi.org/10.1016/j.ejpb.2009.06.01410.1016/j.ejpb.2009.06.014Search in Google Scholar PubMed
[31] Lamberti, G., Cascone, S., Cafaro, M. M, Titomanlio, G., d’Amore, M., & Barba, A. A. (2013). Measurements of water content in hydroxypropyl-methyl-cellulose based hydrogels via texture analysis. Carbohydrate Polymers, 92, 765–768. DOI: 10.1016/j.carbpol.2012.10.003. http://dx.doi.org/10.1016/j.carbpol.2012.10.00310.1016/j.carbpol.2012.10.003Search in Google Scholar PubMed
[32] Li, Y. M., Xu, G. Y., Xin, X., Cao, X. R., & Wu, D. (2008). Dilational surface viscoelasticity of hydroxypropyl methyl cellulose and CnTAB at air-water surface. Carbohydrate Polymers, 72, 211–221. DOI: 10.1016/j.carbpol.2007.08.008. http://dx.doi.org/10.1016/j.carbpol.2007.08.00810.1016/j.carbpol.2007.08.008Search in Google Scholar
[33] Li, W., Sun, B., & Wu, P. (2009). Study on hydrogen bonds of carboxymethyl cellulose sodium film with two-dimensional correlation infrared spectroscopy. Carbohydrate Polymers, 78, 454–461. DOI: 10.1016/j.carbpol.2009.05.002. http://dx.doi.org/10.1016/j.carbpol.2009.05.00210.1016/j.carbpol.2009.05.002Search in Google Scholar
[34] Liu, S. Q., Joshi, S. C., & Lam, Y. C. (2008). Effects of salts in the Hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. Journal of Applied Polymer Science, 109, 363–372. DOI: 10.1002/app.28079. http://dx.doi.org/10.1002/app.2807910.1002/app.28079Search in Google Scholar
[35] Mohamed, R. R., Seoudi, R. S., & Sabaa, M.W. (2012). Synthesis and characterization of antibacterial semi-interpenetrating carboxymethyl chitosan/poly(acrylonitrile) hydrogels. Cellulose, 19, 947–958. DOI: 10.1007/s10570-012-9658-8. http://dx.doi.org/10.1007/s10570-012-9658-810.1007/s10570-012-9658-8Search in Google Scholar
[36] Naik, S., Bhattacharjya, G., Talukdar, B., & Patel, B. K. (2004). Chemoselective acylation of amines in aqueous media. European Journal of Organic Chemistry, 2004, 1254–1260. DOI: 10.1002/ejoc.200300620. http://dx.doi.org/10.1002/ejoc.20030062010.1002/ejoc.200300620Search in Google Scholar
[37] Nimmo, C. M., Owen, S. C., & Shoichet, M. S. (2011). Diels-Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules, 12, 824–830. DOI: 10.1021/bm101446k. http://dx.doi.org/10.1021/bm101446k10.1021/bm101446kSearch in Google Scholar PubMed
[38] Pygall, S. R., Kujawinski, S., Timmins, P., & Melia, C. D. (2009). Mechanisms of drug release in citrate buffered HPMC matrices. International Journal of Pharmaceutics, 370, 110–120. DOI: 10.1016/j.ijpharm.2008.11.022. http://dx.doi.org/10.1016/j.ijpharm.2008.11.02210.1016/j.ijpharm.2008.11.022Search in Google Scholar PubMed
[39] Qin, X., Lu, A., & Zhang, L. (2013). Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose, 20, 1669–1677. DOI: 10.1007/s10570-013-9961-z. http://dx.doi.org/10.1007/s10570-013-9961-z10.1007/s10570-013-9961-zSearch in Google Scholar
[40] Ramasamy, T., Khandasami, U. S., Ruttala, H., & Shanmugam, S. (2012). Development of solid lipid nanoparticles enriched hydrogels for topical delivery of anti-fungal agent. Macro molecular Research, 20, 682–692. DOI: 10.1007/s13233-012-0107-1. http://dx.doi.org/10.1007/s13233-012-0107-110.1007/s13233-012-0107-1Search in Google Scholar
[41] Sannino, A., Pappad`a, S., Madaghiele, M., Maffezzoli, A., Ambrosio, L., & Nicolais, L. (2005). Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer, 46, 11206–11212. DOI: 10.1016/j.polymer.2005.10.048. http://dx.doi.org/10.1016/j.polymer.2005.10.04810.1016/j.polymer.2005.10.048Search in Google Scholar
[42] Saxena, A., Kaloti, M., & Bohidar, H. B. (2011). Rheological properties of binary and ternary protein-polysaccharide cohydrogels and comparative release kinetics of salbutamol sulphate from their matrices. International Journal of Biological Macromolecules, 48, 263–270. DOI: 10.1016/j.ijbiomac.2010.11.008. http://dx.doi.org/10.1016/j.ijbiomac.2010.11.00810.1016/j.ijbiomac.2010.11.008Search in Google Scholar PubMed
[43] Sun, X. L., Yang, L. C., & Chaikof, E. L. (2008). Chemoselective immobilization of biomolecules through aqueous Diels-Alder and PEG chemistry. Tetrahedron Letters, 49, 2510–2513. DOI: 10.1016/j.tetlet.2008.02.111. http://dx.doi.org/10.1016/j.tetlet.2008.02.11110.1016/j.tetlet.2008.02.111Search in Google Scholar PubMed PubMed Central
[44] Tiwari, S., & Kumar, A. (2006). Diels-Alder reactions are faster in water than in ionic liquids at room temperature. Angewandte Chemie International Edition, 45, 4824–4825. DOI: 10.1002/anie.200600426. http://dx.doi.org/10.1002/anie.20060042610.1002/anie.200600426Search in Google Scholar PubMed
[45] Wang, Z. C., Xu, X. D., Chen, C. S., Wang, G. R., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2009). In situ formation of thermosensitive P(NIPAAm-co-GMA)/PEI hydrogels. Reactive & Functional Polymers, 69, 14–19. DOI: 10.1016/j.reactfunctpolym.2008.10.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.10.00410.1016/j.reactfunctpolym.2008.10.004Search in Google Scholar
[46] Wei, H. L., Yang, Z., Chen, Y., Chu, H. J., Zhu, J., & Li, Z. C. (2010a). Characterisation of N-vinyl-2-pyrrolidonebased hydrogels prepared by a Diels-Alder click reaction in water. European Polymer Journal, 46, 1032–1039. DOI: 10.1016/j.eurpolymj.2010.01.025. http://dx.doi.org/10.1016/j.eurpolymj.2010.01.02510.1016/j.eurpolymj.2010.01.025Search in Google Scholar
[47] Wei, H. L., Yang, Z., Chu, H. J., Zhu, J., Li, Z. C., & Cui, J. S. (2010b). Facile preparation of poly(N-isopropylacrylamide)-based hydrogels via aqueous Diels-Alder click reaction. Polymer, 51, 1694–1702. DOI: 10.1016/j.polymer.2010.02.008. http://dx.doi.org/10.1016/j.polymer.2010.02.00810.1016/j.polymer.2010.02.008Search in Google Scholar
[48] Wei, H. L., Yang, J., Chu, H. J., Yang, Z., Ma, C. C., & Yao, K. (2011). Diels-Alder reaction in water for the straightforward preparation of thermoresponsive hydrogels. Journal of Applied Polymer Science, 120, 974–980. DOI: 10.1002/app.33116. http://dx.doi.org/10.1002/app.3311610.1002/app.33116Search in Google Scholar
[49] Wu, J., Liang, S., Dai, H., Zhang, X., Yu, X., Cai, Y., Zhang, L., Wen, N., Jiang, B., & Xu, J. (2010). Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydrate Polymers, 79, 677–684. DOI: 10.1016/j.carbpol.2009.09.022. http://dx.doi.org/10.1016/j.carbpol.2009.09.02210.1016/j.carbpol.2009.09.022Search in Google Scholar
[50] Xu, X. D., Chen, C. S., Lu, B., Wang, Z. C., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2009). Modular synthesis of thermosensitive P(NIPAAm-co-HEMA)/β-CD based hydrogels via click chemistry. Macromolecular Rapid Communications, 30, 157–164. DOI: 10.1002/marc.200800671. http://dx.doi.org/10.1002/marc.20080067110.1002/marc.200800671Search in Google Scholar PubMed
[51] YerriSwamy, B., Prasad, C. V., Reedy, C. L. N., Mallikarjuna, B., Rao, K. C., & Subha, M. C. S. (2011). Interpenetrating polymer network microspheres of hydroxypropyl methyl cellulose/poly (vinyl alcohol) for control release of ciprofloxacin hydrochloride. Cellulose, 18, 349–357. DOI: 10.1007/s10570-010-9475-x. http://dx.doi.org/10.1007/s10570-010-9475-x10.1007/s10570-010-9475-xSearch in Google Scholar
[52] Yu, H. Q., & Cong, R. (2010). Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction. Chemical Papers, 64, 619–624. DOI: 10.2478/s11696-010-0055-1. http://dx.doi.org/10.2478/s11696-010-0055-110.2478/s11696-010-0055-1Search in Google Scholar
[53] Yue, Z., Wen, F., Gao, S., Ang, M. Y., Pallathadka, P. K., Liu, L., & Yu, H. (2010). Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials, 31, 8141–8152. DOI: 10.1016/j.biomaterials.2010.07.059. http://dx.doi.org/10.1016/j.biomaterials.2010.07.05910.1016/j.biomaterials.2010.07.059Search in Google Scholar PubMed
[54] Zhao, G. H., Kapur, N., Carlin, B., Selinger, E., & Guthrie, J. T. (2011). Characterisation of the interactive properties of microcrystalline cellulose-carboxymethyl cellulose hydrogels. International Journal of Pharmaceutics, 415, 95–101. DOI: 10.1016/j.ijpharm.2011.05.054. http://dx.doi.org/10.1016/j.ijpharm.2011.05.05410.1016/j.ijpharm.2011.05.054Search in Google Scholar PubMed
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Chemical preparation and applications of silver dendrites
- Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
- Modelling of ORL1 receptor-ligand interactions
- Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
- Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
- Magnetic mixed matrix membranes in air separation
- The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
- Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
- RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
- Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
- Degradation of polylactide using basic ionic liquid imidazolium acetates
- Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
- Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
- Preparation and physical properties of chitosan-coated calcium sulphate whiskers
- A facile synthetic route for antineoplastic drug GDC-0449
- Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
- Antioxidant and binding properties of methanol extracts from indigo plant leaves
- Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Articles in the same Issue
- Chemical preparation and applications of silver dendrites
- Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
- Modelling of ORL1 receptor-ligand interactions
- Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
- Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
- Magnetic mixed matrix membranes in air separation
- The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
- Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
- RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
- Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
- Degradation of polylactide using basic ionic liquid imidazolium acetates
- Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
- Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
- Preparation and physical properties of chitosan-coated calcium sulphate whiskers
- A facile synthetic route for antineoplastic drug GDC-0449
- Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
- Antioxidant and binding properties of methanol extracts from indigo plant leaves
- Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan